Interactive-Chain-Prompting: Ambiguity Resolution for Crosslingual
Conditional Generation with Interaction
- URL: http://arxiv.org/abs/2301.10309v1
- Date: Tue, 24 Jan 2023 21:08:13 GMT
- Title: Interactive-Chain-Prompting: Ambiguity Resolution for Crosslingual
Conditional Generation with Interaction
- Authors: Jonathan Pilault, Xavier Garcia, Arthur Bra\v{z}inskas, Orhan Firat
- Abstract summary: A source query in one language may yield several translation options in another language without any extra context.
We propose a novel method interactive-chain prompting that reduces translations into a list of subproblems addressing ambiguities.
We create a dataset exhibiting different linguistic phenomena which leads to ambiguities at inference for four languages.
- Score: 38.73550742775257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crosslingual conditional generation (e.g., machine translation) has long
enjoyed the benefits of scaling. Nonetheless, there are still issues that scale
alone may not overcome. A source query in one language, for instance, may yield
several translation options in another language without any extra context. Only
one translation could be acceptable however, depending on the translator's
preferences and goals. Choosing the incorrect option might significantly affect
translation usefulness and quality. We propose a novel method interactive-chain
prompting -- a series of question, answering and generation intermediate steps
between a Translator model and a User model -- that reduces translations into a
list of subproblems addressing ambiguities and then resolving such subproblems
before producing the final text to be translated. To check ambiguity resolution
capabilities and evaluate translation quality, we create a dataset exhibiting
different linguistic phenomena which leads to ambiguities at inference for four
languages. To encourage further exploration in this direction, we release all
datasets. We note that interactive-chain prompting, using eight interactions as
exemplars, consistently surpasses prompt-based methods with direct access to
background information to resolve ambiguities.
Related papers
- A Data Selection Approach for Enhancing Low Resource Machine Translation Using Cross-Lingual Sentence Representations [0.4499833362998489]
This study focuses on the case of English-Marathi language pairs, where existing datasets are notably noisy.
To mitigate the impact of data quality issues, we propose a data filtering approach based on cross-lingual sentence representations.
Results demonstrate a significant improvement in translation quality over the baseline post-filtering with IndicSBERT.
arXiv Detail & Related papers (2024-09-04T13:49:45Z) - X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs [55.80189506270598]
X-PARADE is the first cross-lingual dataset of paragraph-level information divergences.
Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language.
Aligned paragraphs are sourced from Wikipedia pages in different languages.
arXiv Detail & Related papers (2023-09-16T04:34:55Z) - Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data.
We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between latent variables using Optimal Transport.
arXiv Detail & Related papers (2023-07-09T04:52:31Z) - Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation [48.80125962015044]
We investigate the problem of performing a generative task (i.e., summarization) in a target language when labeled data is only available in English.
We find that parameter-efficient adaptation provides gains over standard fine-tuning when transferring between less-related languages.
Our methods can provide further quality gains, suggesting that robust zero-shot cross-lingual generation is within reach.
arXiv Detail & Related papers (2022-05-25T10:41:34Z) - Modelling Latent Translations for Cross-Lingual Transfer [47.61502999819699]
We propose a new technique that integrates both steps of the traditional pipeline (translation and classification) into a single model.
We evaluate our novel latent translation-based model on a series of multilingual NLU tasks.
We report gains for both zero-shot and few-shot learning setups, up to 2.7 accuracy points on average.
arXiv Detail & Related papers (2021-07-23T17:11:27Z) - Improving Zero-Shot Translation by Disentangling Positional Information [24.02434897109097]
We show that a main factor causing the language-specific representations is the positional correspondence to input tokens.
We gain up to 18.5 BLEU points on zero-shot translation while retaining quality on supervised directions.
arXiv Detail & Related papers (2020-12-30T12:20:41Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
We show that machine translation can introduce subtle artifacts that have a notable impact in existing cross-lingual models.
In natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them.
We also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
arXiv Detail & Related papers (2020-04-09T17:54:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.