Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning
- URL: http://arxiv.org/abs/2301.10394v2
- Date: Thu, 26 Jan 2023 02:32:14 GMT
- Title: Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning
- Authors: Wenkai Yang, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, Xu Sun
- Abstract summary: Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
- Score: 60.41501515192088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has become a popular distributed learning paradigm
that involves multiple clients training a global model collaboratively in a
data privacy-preserving manner. However, the data samples usually follow a
long-tailed distribution in the real world, and FL on the decentralized and
long-tailed data yields a poorly-behaved global model severely biased to the
head classes with the majority of the training samples. To alleviate this
issue, decoupled training has recently been introduced to FL, considering it
has achieved promising results in centralized long-tailed learning by
re-balancing the biased classifier after the instance-balanced training.
However, the current study restricts the capacity of decoupled training in
federated long-tailed learning with a sub-optimal classifier re-trained on a
set of pseudo features, due to the unavailability of a global balanced dataset
in FL. In this work, in order to re-balance the classifier more effectively, we
integrate the local real data with the global gradient prototypes to form the
local balanced datasets, and thus re-balance the classifier during the local
training. Furthermore, we introduce an extra classifier in the training phase
to help model the global data distribution, which addresses the problem of
contradictory optimization goals caused by performing classifier re-balancing
locally. Extensive experiments show that our method consistently outperforms
the existing state-of-the-art methods in various settings.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - FedLoGe: Joint Local and Generic Federated Learning under Long-tailed
Data [46.29190753993415]
Federated Long-Tailed Learning (Fed-LT) is a paradigm wherein data collected from decentralized local clients manifests a globally prevalent long-tailed distribution.
This paper introduces an approach termed Federated Local and Generic Model Training in Fed-LT (FedLoGe), which enhances both local and generic model performance.
arXiv Detail & Related papers (2024-01-17T05:04:33Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
Cross-silo federated learning (FL) enables the development of machine learning models on datasets distributed across data centers.
Recent research has found that current FL algorithms face a trade-off between local and global performance when confronted with distribution shifts.
We propose a novel federated model soup method to optimize the trade-off between local and global performance.
arXiv Detail & Related papers (2023-07-20T00:07:29Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Rethinking Class-Balanced Methods for Long-Tailed Visual Recognition
from a Domain Adaptation Perspective [98.70226503904402]
Object frequency in the real world often follows a power law, leading to a mismatch between datasets with long-tailed class distributions.
We propose to augment the classic class-balanced learning by explicitly estimating the differences between the class-conditioned distributions with a meta-learning approach.
arXiv Detail & Related papers (2020-03-24T11:28:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.