Editing Language Model-based Knowledge Graph Embeddings
- URL: http://arxiv.org/abs/2301.10405v7
- Date: Mon, 18 Dec 2023 16:09:49 GMT
- Title: Editing Language Model-based Knowledge Graph Embeddings
- Authors: Siyuan Cheng, Bozhong Tian, Xi Chen, Ningyu Zhang, Qingbing Liu,
Huajun Chen
- Abstract summary: We propose a new task of editing language model-based Knowledge Graph embeddings in this paper.
This task is designed to facilitate rapid, data-efficient updates to KG embeddings without compromising the performance of other aspects.
We build four new datasets and evaluate several knowledge editing baselines demonstrating the limited ability of previous models to handle the proposed challenging task.
- Score: 40.12918266917595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently decades have witnessed the empirical success of framing Knowledge
Graph (KG) embeddings via language models. However, language model-based KG
embeddings are usually deployed as static artifacts, making them difficult to
modify post-deployment without re-training after deployment. To address this
issue, we propose a new task of editing language model-based KG embeddings in
this paper. This task is designed to facilitate rapid, data-efficient updates
to KG embeddings without compromising the performance of other aspects. We
build four new datasets: E-FB15k237, A-FB15k237, E-WN18RR, and A-WN18RR, and
evaluate several knowledge editing baselines demonstrating the limited ability
of previous models to handle the proposed challenging task. We further propose
a simple yet strong baseline dubbed KGEditor, which utilizes additional
parametric layers of the hypernetwork to edit/add facts. Our comprehensive
experimental results reveal that KGEditor excels in updating specific facts
without impacting the overall performance, even when faced with limited
training resources. Code and datasets are available in
https://github.com/zjunlp/PromptKG/tree/main/deltaKG.
Related papers
- EMERGE: A Benchmark for Updating Knowledge Graphs with Emerging Textual Knowledge [48.36331802345063]
We propose a method for lifelong construction of a dataset consisting of Wikidata KG snapshots over time and Wikipedia passages.<n>The resulting dataset comprises 376K Wikipedia passages aligned with a total of 1.25M KG edits over 10 different snapshots of Wikidata from 2019 to 2025.
arXiv Detail & Related papers (2025-07-04T14:43:21Z) - GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - K-Edit: Language Model Editing with Contextual Knowledge Awareness [71.73747181407323]
Knowledge-based model editing enables precise modifications to the weights of large language models.
We present K-Edit, an effective approach to generating contextually consistent knowledge edits.
arXiv Detail & Related papers (2025-02-15T01:35:13Z) - AnyEdit: Edit Any Knowledge Encoded in Language Models [69.30638272162267]
We propose AnyEdit, a new autoregressive editing paradigm for large language models (LLMs)
It decomposes long-form knowledge into sequential chunks and iteratively edits the key token in each chunk, ensuring consistent and accurate outputs.
It outperforms strong baselines by 21.5% on benchmarks including UnKEBench, AKEW, and our new EditEverything dataset for long-form diverse-formatted knowledge.
arXiv Detail & Related papers (2025-02-08T16:18:37Z) - Retrieval-Augmented Language Model for Extreme Multi-Label Knowledge Graph Link Prediction [2.6749568255705656]
Extrapolation in large language models (LLMs) for open-ended inquiry encounters two pivotal issues.
Existing works attempt to tackle the problem by augmenting the input of a smaller language model with information from a knowledge graph.
We propose a new task, the extreme multi-label KG link prediction task, to enable a model to perform extrapolation with multiple responses.
arXiv Detail & Related papers (2024-05-21T10:10:56Z) - Detecting Edited Knowledge in Language Models [5.260519479124422]
Knowledge editing methods (KEs) can update language models' obsolete or inaccurate knowledge learned from pre-training.
Knowing whether a generated output is based on edited knowledge or first-hand knowledge from pre-training can increase users' trust in generative models.
We propose a novel task: detecting edited knowledge in language models.
arXiv Detail & Related papers (2024-05-04T22:02:24Z) - FedMKGC: Privacy-Preserving Federated Multilingual Knowledge Graph
Completion [21.4302940596294]
Knowledge graph completion (KGC) aims to predict missing facts in knowledge graphs (KGs)
Previous methods that rely on transferring raw data among KGs raise privacy concerns.
We propose a new federated learning framework that implicitly aggregates knowledge from multiple KGs without demanding raw data exchange and entity alignment.
arXiv Detail & Related papers (2023-12-17T08:09:27Z) - Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language
Models [53.09723678623779]
We propose TAGREAL to automatically generate quality query prompts and retrieve support information from large text corpora.
The results show that TAGREAL achieves state-of-the-art performance on two benchmark datasets.
We find that TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.
arXiv Detail & Related papers (2023-05-24T22:09:35Z) - Grounded Keys-to-Text Generation: Towards Factual Open-Ended Generation [92.1582872870226]
We propose a new grounded keys-to-text generation task.
The task is to generate a factual description about an entity given a set of guiding keys, and grounding passages.
Inspired by recent QA-based evaluation measures, we propose an automatic metric, MAFE, for factual correctness of generated descriptions.
arXiv Detail & Related papers (2022-12-04T23:59:41Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
We propose GRACE, a lifelong model editing method, which implements spot-fixes on streaming errors of a deployed model.
GRACE writes new mappings into a pre-trained model's latent space, creating a discrete, local codebook of edits without altering model weights.
Our experiments on T5, BERT, and GPT models show GRACE's state-of-the-art performance in making and retaining edits, while generalizing to unseen inputs.
arXiv Detail & Related papers (2022-11-20T17:18:22Z) - GAP: A Graph-aware Language Model Framework for Knowledge Graph-to-Text
Generation [3.593955557310285]
Recent improvements in KG-to-text generation are due to auxiliary pre-training tasks designed to give the fine-tune task a boost in performance.
Here, we demonstrate that by fusing graph-aware elements into existing pre-trained language models, we are able to outperform state-of-the-art models and close the gap imposed by additional pre-training tasks.
arXiv Detail & Related papers (2022-04-13T23:53:37Z) - KELM: Knowledge Enhanced Pre-Trained Language Representations with
Message Passing on Hierarchical Relational Graphs [26.557447199727758]
We propose a novel knowledge-aware language model framework based on fine-tuning process.
Our model can efficiently incorporate world knowledge from KGs into existing language models such as BERT.
arXiv Detail & Related papers (2021-09-09T12:39:17Z) - Editing Factual Knowledge in Language Models [51.947280241185]
We present KnowledgeEditor, a method that can be used to edit this knowledge.
Besides being computationally efficient, KnowledgeEditor does not require any modifications in LM pre-training.
We show KnowledgeEditor's efficacy with two popular architectures and knowledge-intensive tasks.
arXiv Detail & Related papers (2021-04-16T15:24:42Z) - KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation [100.79870384880333]
We propose a knowledge-grounded pre-training (KGPT) to generate knowledge-enriched text.
We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness.
Under zero-shot setting, our model achieves over 30 ROUGE-L on WebNLG while all other baselines fail.
arXiv Detail & Related papers (2020-10-05T19:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.