Predicting mental health using social media: A roadmap for future
development
- URL: http://arxiv.org/abs/2301.10453v1
- Date: Wed, 25 Jan 2023 08:08:29 GMT
- Title: Predicting mental health using social media: A roadmap for future
development
- Authors: Ramin Safa, S. A. Edalatpanah and Ali Sorourkhah
- Abstract summary: Mental disorders such as depression and suicidal ideation affect more than 300 million people over the world.
On social media, mental disorder symptoms can be observed, and automated approaches are increasingly capable of detecting them.
This research offers a roadmap for analysis, where mental state detection can be based on machine learning techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mental disorders such as depression and suicidal ideation are hazardous,
affecting more than 300 million people over the world. However, on social
media, mental disorder symptoms can be observed, and automated approaches are
increasingly capable of detecting them. The considerable number of social media
users and the tremendous quantity of user-generated data on social platforms
provide a unique opportunity for researchers to distinguish patterns that
correlate with mental status. This research offers a roadmap for analysis,
where mental state detection can be based on machine learning techniques. We
describe the common approaches for predicting and identifying the disorder
using user-generated content. This research is organized according to the data
collection, feature extraction, and prediction algorithms. Furthermore, we
review several recent studies conducted to explore different features of
candidate profiles and their analytical methods. Following, we debate various
aspects of the development of experimental auto-detection frameworks for
identifying users who suffer from disorders, and we conclude with a discussion
of future trends. The introduced methods can help complement screening
procedures, identify at-risk people through social media monitoring on a large
scale, and make disorders easier to treat in the future.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - Explainable Depression Symptom Detection in Social Media [2.677715367737641]
We propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings.
Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms.
arXiv Detail & Related papers (2023-10-20T17:05:27Z) - An Annotated Dataset for Explainable Interpersonal Risk Factors of
Mental Disturbance in Social Media Posts [0.0]
We construct and release a new annotated dataset with human-labelled explanations and classification of Interpersonal Risk Factors (IRF) affecting mental disturbance on social media.
We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.
arXiv Detail & Related papers (2023-05-30T04:08:40Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Social Behavior and Mental Health: A Snapshot Survey under COVID-19
Pandemic [6.5721468981020665]
COVID-19 pandemic has changed the way we live, study, socialize and recreate.
There are growing researches that leverage online social media analysis to detect and assess user's mental status.
arXiv Detail & Related papers (2021-05-17T21:08:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.