Imitating Human Behaviour with Diffusion Models
- URL: http://arxiv.org/abs/2301.10677v1
- Date: Wed, 25 Jan 2023 16:31:05 GMT
- Title: Imitating Human Behaviour with Diffusion Models
- Authors: Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei
Sun, Raluca Georgescu, Sergio Valcarcel Macua, Shan Zheng Tan, Ida
Momennejad, Katja Hofmann, Sam Devlin
- Abstract summary: Diffusion models have emerged as powerful generative models in the text-to-image domain.
This paper studies their application as observation-to-action models for imitating human behaviour in sequential environments.
- Score: 25.55215280101109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as powerful generative models in the
text-to-image domain. This paper studies their application as
observation-to-action models for imitating human behaviour in sequential
environments. Human behaviour is stochastic and multimodal, with structured
correlations between action dimensions. Meanwhile, standard modelling choices
in behaviour cloning are limited in their expressiveness and may introduce bias
into the cloned policy. We begin by pointing out the limitations of these
choices. We then propose that diffusion models are an excellent fit for
imitating human behaviour, since they learn an expressive distribution over the
joint action space. We introduce several innovations to make diffusion models
suitable for sequential environments; designing suitable architectures,
investigating the role of guidance, and developing reliable sampling
strategies. Experimentally, diffusion models closely match human demonstrations
in a simulated robotic control task and a modern 3D gaming environment.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Generative Agent-Based Modeling: Unveiling Social System Dynamics
through Coupling Mechanistic Models with Generative Artificial Intelligence [0.5898893619901381]
We discuss the emerging new opportunity for building feedback-rich computational models of social systems using generative artificial intelligence.
Referred to as Generative Agent-Based Models (GABMs), such individual-level models utilize large language models such as ChatGPT to represent human decision-making in social settings.
We provide a GABM case in which human behavior can be incorporated in simulation models by coupling a mechanistic model of human interactions with a pre-trained large language model.
arXiv Detail & Related papers (2023-09-20T16:43:05Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding.
Recent studies have shown great enthusiasm on improving the performance of diffusion model.
arXiv Detail & Related papers (2022-09-02T02:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.