NASCTY: Neuroevolution to Attack Side-channel Leakages Yielding
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2301.10802v1
- Date: Wed, 25 Jan 2023 19:31:04 GMT
- Title: NASCTY: Neuroevolution to Attack Side-channel Leakages Yielding
Convolutional Neural Networks
- Authors: Fiske Schijlen, Lichao Wu, Luca Mariot
- Abstract summary: Side-channel analysis (SCA) can obtain information related to the secret key by exploiting leakages produced by the device.
Researchers recently found that neural networks (NNs) can execute a powerful profiling SCA, even on targets protected with countermeasures.
This paper explores the effectiveness of Neuroevolution to Attack Side-channel Traces Yielding Convolutional Neural Networks (NASCTY-CNNs)
- Score: 1.1602089225841632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Side-channel analysis (SCA) can obtain information related to the secret key
by exploiting leakages produced by the device. Researchers recently found that
neural networks (NNs) can execute a powerful profiling SCA, even on targets
protected with countermeasures. This paper explores the effectiveness of
Neuroevolution to Attack Side-channel Traces Yielding Convolutional Neural
Networks (NASCTY-CNNs), a novel genetic algorithm approach that applies genetic
operators on architectures' hyperparameters to produce CNNs for side-channel
analysis automatically. The results indicate that we can achieve performance
close to state-of-the-art approaches on desynchronized leakages with mask
protection, demonstrating that similar neuroevolution methods provide a solid
venue for further research. Finally, the commonalities among the constructed
NNs provide information on how NASCTY builds effective architectures and deals
with the applied countermeasures.
Related papers
- Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We introduce a novel class of Deep Sparse Coding (DSC) models.
We derive convergence rates for CNNs in their ability to extract sparse features.
Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - BrainLeaks: On the Privacy-Preserving Properties of Neuromorphic Architectures against Model Inversion Attacks [3.4673556247932225]
Conventional artificial neural networks (ANNs) have been found vulnerable to several attacks that can leak sensitive data.
Our study is motivated by the intuition that the non-differentiable aspect of spiking neural networks (SNNs) might result in inherent privacy-preserving properties.
We develop novel inversion attack strategies that are comprehensively designed to target SNNs.
arXiv Detail & Related papers (2024-02-01T03:16:40Z) - Structured Neural Networks for Density Estimation and Causal Inference [15.63518195860946]
Injecting structure into neural networks enables learning functions that satisfy invariances with respect to subsets of inputs.
We propose the Structured Neural Network (StrNN), which injects structure through masking pathways in a neural network.
arXiv Detail & Related papers (2023-11-03T20:15:05Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Model-Agnostic Reachability Analysis on Deep Neural Networks [25.54542656637704]
We develop a model-agnostic verification framework, called DeepAgn.
It can be applied to FNNs, Recurrent Neural Networks (RNNs), or a mixture of both.
It does not require access to the network's internal structures, such as layers and parameters.
arXiv Detail & Related papers (2023-04-03T09:01:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.