Deep Industrial Image Anomaly Detection: A Survey
- URL: http://arxiv.org/abs/2301.11514v5
- Date: Thu, 12 Oct 2023 08:49:31 GMT
- Title: Deep Industrial Image Anomaly Detection: A Survey
- Authors: Jiaqi Liu, Guoyang Xie, Jinbao Wang, Shangnian Li, Chengjie Wang, Feng
Zheng, Yaochu Jin
- Abstract summary: Recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD)
In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques.
We highlight several opening challenges for image anomaly detection.
- Score: 85.44223757234671
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent rapid development of deep learning has laid a milestone in
industrial Image Anomaly Detection (IAD). In this paper, we provide a
comprehensive review of deep learning-based image anomaly detection techniques,
from the perspectives of neural network architectures, levels of supervision,
loss functions, metrics and datasets. In addition, we extract the new setting
from industrial manufacturing and review the current IAD approaches under our
proposed our new setting. Moreover, we highlight several opening challenges for
image anomaly detection. The merits and downsides of representative network
architectures under varying supervision are discussed. Finally, we summarize
the research findings and point out future research directions. More resources
are available at
https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Attention Modules Improve Image-Level Anomaly Detection for Industrial
Inspection: A DifferNet Case Study [2.2942964892621807]
We propose a DifferNet-based solution enhanced with attention modules: AttentDifferNet.
It improves image-level detection and classification capabilities on three visual anomaly detection datasets for industrial inspection.
Our evaluation shows an average improvement - compared to DifferNet - of 1.77 +/- 0.25 percentage points in overall AUROC.
arXiv Detail & Related papers (2023-11-05T19:48:50Z) - Intrusion Detection: A Deep Learning Approach [0.0]
The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and a Support Vector Machine (SVM) classification function.
The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
arXiv Detail & Related papers (2023-06-13T07:58:40Z) - ResAttUNet: Detecting Marine Debris using an Attention activated
Residual UNet [0.0]
This paper introduces a novel attention based segmentation technique that outperforms the existing state-of-the-art results introduced with MARIDA.
The attained results are expected to pave the path for further research involving deep learning using remote sensing images.
arXiv Detail & Related papers (2022-10-16T10:59:32Z) - A Survey on Unsupervised Anomaly Detection Algorithms for Industrial
Images [2.4976719861186845]
In line with the development of Industry 4.0, surface defect detection/anomaly detection becomes a topical subject in the industry field.
Unsupervised learning has great potential in tackling the above disadvantages for visual industrial anomaly detection.
arXiv Detail & Related papers (2022-04-24T01:38:18Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Building Robust Industrial Applicable Object Detection Models Using
Transfer Learning and Single Pass Deep Learning Architectures [1.1816942730023883]
We explore how deep convolutional neural networks dedicated to the task of object detection can improve our industrial-oriented object detection pipelines.
By using a deep learning architecture that integrates region proposals, classification and probability estimation in a single run, we aim at obtaining real-time performance.
We apply these algorithms to two industrially relevant applications, one being the detection of promotion boards in eye tracking data and the other detecting and recognizing packages of warehouse products for augmented advertisements.
arXiv Detail & Related papers (2020-07-09T09:50:45Z) - Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly
Supervised Object Detection [76.9756607002489]
We propose a novel webly supervised object detection (WebSOD) method for novel classes.
Our proposed method combines bottom-up and top-down cues for novel class detection.
We demonstrate our proposed method on PASCAL VOC dataset with three different novel/base splits.
arXiv Detail & Related papers (2020-03-22T03:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.