Learning the Dynamics of Sparsely Observed Interacting Systems
- URL: http://arxiv.org/abs/2301.11647v2
- Date: Wed, 31 May 2023 14:08:23 GMT
- Title: Learning the Dynamics of Sparsely Observed Interacting Systems
- Authors: Linus Bleistein, Adeline Fermanian, Anne-Sophie Jannot, Agathe
Guilloux
- Abstract summary: We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series.
By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression.
- Score: 0.6021787236982659
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of learning the dynamics of an unknown non-parametric
system linking a target and a feature time series. The feature time series is
measured on a sparse and irregular grid, while we have access to only a few
points of the target time series. Once learned, we can use these dynamics to
predict values of the target from the previous values of the feature time
series. We frame this task as learning the solution map of a controlled
differential equation (CDE). By leveraging the rich theory of signatures, we
are able to cast this non-linear problem as a high-dimensional linear
regression. We provide an oracle bound on the prediction error which exhibits
explicit dependencies on the individual-specific sampling schemes. Our
theoretical results are illustrated by simulations which show that our method
outperforms existing algorithms for recovering the full time series while being
computationally cheap. We conclude by demonstrating its potential on real-world
epidemiological data.
Related papers
- Foundational Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.
We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.
We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Interpretable reduced-order modeling with time-scale separation [9.889399863931676]
Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering.
We propose a data-driven scheme that automates the identification of the time-scales involved.
We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs.
arXiv Detail & Related papers (2023-03-03T19:23:59Z) - Temporal Graph Neural Networks for Irregular Data [14.653008985229615]
TGNN4I model is designed to handle both irregular time steps and partial observations of the graph.
Time-continuous dynamics enables the model to make predictions at arbitrary time steps.
Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics.
arXiv Detail & Related papers (2023-02-16T16:47:55Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.