FedHP: Heterogeneous Federated Learning with Privacy-preserving
- URL: http://arxiv.org/abs/2301.11705v1
- Date: Fri, 27 Jan 2023 13:32:17 GMT
- Title: FedHP: Heterogeneous Federated Learning with Privacy-preserving
- Authors: Kuang Hangdong and Mi Bo
- Abstract summary: Federated learning is a distributed machine learning environment, which ensures that clients complete collaborative training without sharing private data, only by exchanging parameters.
We propose a novel federated learning method, which consists of the pre-trained model as the backbone and fully connected layers as the head.
By sharing the embedding vector of classes, instead of parameters based on gradient space, clients can better adapt to private data, and it is more efficient in the communication between the server and clients.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning is a distributed machine learning environment, which
ensures that clients complete collaborative training without sharing private
data, only by exchanging parameters. However, the data does not satisfy the
same distribution and the computing resources of clients are different, which
brings challenges to the related research. To better solve the above
heterogeneous problems, we designed a novel federated learning method. The
local model consists of the pre-trained model as the backbone and fully
connected layers as the head. The backbone can extract features for the head,
and the embedding vector of classes is shared between clients to optimize the
head so that the local model can perform better. By sharing the embedding
vector of classes, instead of parameters based on gradient space, clients can
better adapt to private data, and it is more efficient in the communication
between the server and clients. To better protect privacy, we proposed a
privacy-preserving hybrid method to add noise to the embedding vector of
classes, which has less impact on the local model performance under the premise
of satisfying differential privacy. We conduct a comprehensive evaluation with
other federated learning methods on the self-built vehicle dataset under
non-independent identically distributed(Non-IID)
Related papers
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
We propose a methodology combining Federated Learning (FL) with Cross-view Image Geo-localization (CVGL) techniques.
Our method implements a coarse-to-fine approach, where clients share only the coarse feature extractors while keeping fine-grained features specific to local environments.
Results demonstrate that our federated CVGL method achieves performance close to centralized training while maintaining data privacy.
arXiv Detail & Related papers (2024-11-07T13:25:52Z) - Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Personalized Federated Learning via Sequential Layer Expansion in Representation Learning [0.0]
Federated learning ensures the privacy of clients by conducting distributed training on individual client devices and sharing only the model weights with a central server.
We propose a new representation learning-based approach that suggests decoupling the entire deep learning model into more densely divided parts with the application of suitable scheduling methods.
arXiv Detail & Related papers (2024-04-27T06:37:19Z) - Brain Storm Optimization Based Swarm Learning for Diabetic Retinopathy Image Classification [5.440545944342685]
This paper integrates the brain storm optimization algorithm into the swarm learning framework, named BSO-SL.
The proposed method has been validated on a real-world diabetic retinopathy image classification dataset.
arXiv Detail & Related papers (2024-04-24T01:37:20Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Subspace based Federated Unlearning [75.90552823500633]
Federated unlearning (FL) aims to remove a specified target client's contribution in FL to satisfy the user's right to be forgotten.
Most existing federated unlearning algorithms require the server to store the history of the parameter updates.
We propose a simple-yet-effective subspace based federated unlearning method, dubbed SFU, that lets the global model perform gradient ascent.
arXiv Detail & Related papers (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
We propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg)
FedClassAvg aggregates weights as an agreement on decision boundaries on feature spaces.
We demonstrate it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.
arXiv Detail & Related papers (2022-10-25T08:32:08Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.