Stochastic Dimension-reduced Second-order Methods for Policy
Optimization
- URL: http://arxiv.org/abs/2301.12174v1
- Date: Sat, 28 Jan 2023 12:09:58 GMT
- Title: Stochastic Dimension-reduced Second-order Methods for Policy
Optimization
- Authors: Jinsong Liu, Chenghan Xie, Qi Deng, Dongdong Ge, Yinyu Ye
- Abstract summary: We propose several new second-order algorithms for policy optimization that only require gradient and Hessian-vector product in each iteration.
Specifically, we propose a dimension-reduced second-order method (DR-SOPO) which repeatedly solves a projected two-dimensional trust region subproblem.
We show that DR-SOPO obtains an $mathcalO(epsilon-3.5)$ complexity for reaching approximate first-order stationary condition.
In addition, we present an enhanced algorithm (DVR-SOPO) which further improves the complexity to $mathcalO
- Score: 11.19708535159457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose several new stochastic second-order algorithms for
policy optimization that only require gradient and Hessian-vector product in
each iteration, making them computationally efficient and comparable to policy
gradient methods. Specifically, we propose a dimension-reduced second-order
method (DR-SOPO) which repeatedly solves a projected two-dimensional trust
region subproblem. We show that DR-SOPO obtains an
$\mathcal{O}(\epsilon^{-3.5})$ complexity for reaching approximate first-order
stationary condition and certain subspace second-order stationary condition. In
addition, we present an enhanced algorithm (DVR-SOPO) which further improves
the complexity to $\mathcal{O}(\epsilon^{-3})$ based on the variance reduction
technique. Preliminary experiments show that our proposed algorithms perform
favorably compared with stochastic and variance-reduced policy gradient
methods.
Related papers
- Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Efficiently Escaping Saddle Points for Non-Convex Policy Optimization [40.0986936439803]
Policy gradient (PG) is widely used in reinforcement learning due to its scalability and good performance.
We propose a variance-reduced second-order method that uses second-order information in the form of Hessian vector products (HVP) and converges to an approximate second-order stationary point (SOSP) with sample complexity of $tildeO(epsilon-3)$.
arXiv Detail & Related papers (2023-11-15T12:36:45Z) - A Cubic-regularized Policy Newton Algorithm for Reinforcement Learning [9.628032156001073]
We propose two policy Newton algorithms that incorporate cubic regularization.
Both algorithms employ the likelihood ratio method to form estimates of the gradient and Hessian of the value function.
In particular, the sample complexity of our algorithms to find an $epsilon$-SOSP is $O(epsilon-3.5)$, which is an improvement over the state-of-the-art sample complexity of $O(epsilon-4.5)$.
arXiv Detail & Related papers (2023-04-21T13:43:06Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - DRSOM: A Dimension Reduced Second-Order Method [13.778619250890406]
Under a trust-like framework, our method preserves the convergence of the second-order method while using only information in a few directions.
Theoretically, we show that the method has a local convergence and a global convergence rate of $O(epsilon-3/2)$ to satisfy the first-order and second-order conditions.
arXiv Detail & Related papers (2022-07-30T13:05:01Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
We study a new two-time-scale gradient method for solving optimization problems.
Our first contribution is to characterize the finite-time complexity of the proposed two-time-scale gradient algorithm.
We apply our framework to gradient-based policy evaluation algorithms in reinforcement learning.
arXiv Detail & Related papers (2021-09-29T23:15:23Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.