The Influences of Color and Shape Features in Visual Contrastive
Learning
- URL: http://arxiv.org/abs/2301.12459v1
- Date: Sun, 29 Jan 2023 15:10:14 GMT
- Title: The Influences of Color and Shape Features in Visual Contrastive
Learning
- Authors: Xiaoqi Zhuang
- Abstract summary: This paper investigates the influences of individual image features (e.g., color and shape) to model performance remain ambiguous.
Experimental results show that compared with supervised representations, contrastive representations tend to cluster with objects of similar color.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of visual representation learning, performance of contrastive
learning has been catching up with the supervised method which is commonly a
classification convolutional neural network. However, most of the research work
focuses on improving the accuracy of downstream tasks such as image
classification and object detection. For visual contrastive learning, the
influences of individual image features (e.g., color and shape) to model
performance remain ambiguous.
This paper investigates such influences by designing various ablation
experiments, the results of which are evaluated by specifically designed
metrics. While these metrics are not invented by us, we first use them in the
field of representation evaluation. Specifically, we assess the contribution of
two primary image features (i.e., color and shape) in a quantitative way.
Experimental results show that compared with supervised representations,
contrastive representations tend to cluster with objects of similar color in
the representation space, and contain less shape information than supervised
representations. Finally, we discuss that the current data augmentation is
responsible for these results. We believe that exploring an unsupervised
augmentation method that
Related papers
- What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - ColorSense: A Study on Color Vision in Machine Visual Recognition [57.916512479603064]
We collect 110,000 non-trivial human annotations of foreground and background color labels from visual recognition benchmarks.
We validate the use of our datasets by demonstrating that the level of color discrimination has a dominating effect on the performance of machine perception models.
Our findings suggest that object recognition tasks such as classification and localization are susceptible to color vision bias.
arXiv Detail & Related papers (2022-12-16T18:51:41Z) - Unsupervised Feature Clustering Improves Contrastive Representation
Learning for Medical Image Segmentation [18.75543045234889]
Self-supervised instance discrimination is an effective contrastive pretext task to learn feature representations and address limited medical image annotations.
We propose a new self-supervised contrastive learning method that uses unsupervised feature clustering to better select positive and negative image samples.
Our method outperforms state-of-the-art self-supervised contrastive techniques on these tasks.
arXiv Detail & Related papers (2022-11-15T22:54:29Z) - Supervised Contrastive Learning for Affect Modelling [2.570570340104555]
We introduce three different supervised contrastive learning approaches for training representations that consider affect information.
Results demonstrate the representation capacity of contrastive learning and its efficiency in boosting the accuracy of affect models.
arXiv Detail & Related papers (2022-08-25T17:40:19Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Impacts of the Numbers of Colors and Shapes on Outlier Detection: from
Automated to User Evaluation [1.7205106391379026]
This paper contributes to the theme by extending visual search theories to an information visualization context.
We consider a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractor.
The results show that the major difficulty factor is the number of visual attributes that are used to encode the outlier.
arXiv Detail & Related papers (2021-03-10T14:35:53Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks.
Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations.
arXiv Detail & Related papers (2020-07-13T10:26:30Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.