Graph Mixer Networks
- URL: http://arxiv.org/abs/2301.12493v1
- Date: Sun, 29 Jan 2023 17:03:00 GMT
- Title: Graph Mixer Networks
- Authors: Ahmet Sar{\i}g\"un
- Abstract summary: We propose the Graph Mixer Network, also referred to as Graph Nasreddin Nets (GNasNets), a framework that incorporates the principles of the foundation-Mixers for graph-structured data.
Using a PNA model with multiple aggregators, our proposed GMN has demonstrated improved performance compared to Graph Transformers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the attention mechanism has demonstrated superior
performance in various tasks, leading to the emergence of GAT and Graph
Transformer models that utilize this mechanism to extract relational
information from graph-structured data. However, the high computational cost
associated with the Transformer block, as seen in Vision Transformers, has
motivated the development of alternative architectures such as MLP-Mixers,
which have been shown to improve performance in image tasks while reducing the
computational cost. Despite the effectiveness of Transformers in graph-based
tasks, their computational efficiency remains a concern. The logic behind
MLP-Mixers, which addresses this issue in image tasks, has the potential to be
applied to graph-structured data as well. In this paper, we propose the Graph
Mixer Network (GMN), also referred to as Graph Nasreddin Nets (GNasNets), a
framework that incorporates the principles of MLP-Mixers for graph-structured
data. Using a PNA model with multiple aggregators as the foundation, our
proposed GMN has demonstrated improved performance compared to Graph
Transformers. The source code is available publicly at
https://github.com/asarigun/GraphMixerNetworks.
Related papers
- Learning Graph Quantized Tokenizers for Transformers [28.79505338383552]
Graph Transformers (GTs) have emerged as a leading model in deep learning, outperforming Graph Neural Networks (GNNs) in various graph learning tasks.
We introduce GQT (textbfGraph textbfQuantized textbfTokenizer), which decouples tokenizer training from Transformer training by leveraging graph self-supervised learning.
By combining the GQT with token modulation, a Transformer encoder achieves state-of-the-art performance on 16 out of 18 benchmarks, including large-scale homophilic and heterophilic datasets.
arXiv Detail & Related papers (2024-10-17T17:38:24Z) - Masked Graph Transformer for Large-Scale Recommendation [56.37903431721977]
We propose an efficient Masked Graph Transformer, named MGFormer, capable of capturing all-pair interactions among nodes with a linear complexity.
Experimental results show the superior performance of our MGFormer, even with a single attention layer.
arXiv Detail & Related papers (2024-05-07T06:00:47Z) - SpikeGraphormer: A High-Performance Graph Transformer with Spiking Graph Attention [1.4126245676224705]
Graph Transformers have emerged as a promising solution to alleviate the inherent limitations of Graph Neural Networks (GNNs)
We propose a novel insight into integrating SNNs with Graph Transformers and design a Spiking Graph Attention (SGA) module.
SpikeGraphormer consistently outperforms existing state-of-the-art approaches across various datasets.
arXiv Detail & Related papers (2024-03-21T03:11:53Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
We show that a one-layer attention can bring up surprisingly competitive performance across node property prediction benchmarks.
We frame the proposed scheme as Simplified Graph Transformers (SGFormer), which is empowered by a simple attention model.
We believe the proposed methodology alone enlightens a new technical path of independent interest for building Transformers on large graphs.
arXiv Detail & Related papers (2023-06-19T08:03:25Z) - Diffusing Graph Attention [15.013509382069046]
We develop a new model for Graph Transformers that integrates the arbitrary graph structure into the architecture.
GD learns to extract structural and positional relationships between distant nodes in the graph, which it then uses to direct the Transformer's attention and node representation.
Experiments on eight benchmarks show Graph diffuser to be a highly competitive model, outperforming the state-of-the-art in a diverse set of domains.
arXiv Detail & Related papers (2023-03-01T16:11:05Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
We present Graphormer, which is built upon the standard Transformer architecture.
Our key insight to utilizing Transformer in the graph is the necessity of effectively encoding the structural information of a graph into the model.
arXiv Detail & Related papers (2021-06-09T17:18:52Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.