Magnetic sensitivity enhancement via polarimetric excitation and
detection of an ensemble of NV centers
- URL: http://arxiv.org/abs/2301.12758v1
- Date: Mon, 30 Jan 2023 10:07:13 GMT
- Title: Magnetic sensitivity enhancement via polarimetric excitation and
detection of an ensemble of NV centers
- Authors: Simone Magaletti, Ludovic Mayer, Xuan Phuc Le, and Thierry
Debuisschert
- Abstract summary: negatively charged nitrogen-vacancy center (NV) presents remarkable spin-dependent optical properties.
We exploit the polarization properties of the NV center absorption and emission processes to improve the magnetic sensitivity of an ensemble of NV centers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The negatively charged nitrogen-vacancy center (NV) presents remarkable
spin-dependent optical properties that make it an interesting tool for magnetic
field sensing. In this paper we exploit the polarization properties of the NV
center absorption and emission processes to improve the magnetic sensitivity of
an ensemble of NV centers. By simply equipping the experimental set-up of a
half-wave plate in the excitation path and a polarizer in the detection path we
demonstrate an improvement larger than a factor of two on the NV center
magnetic sensitivity.
Related papers
- Microscale Sensing with Strongly Interacting NV Ensembles at High Fields [0.0]
We present a method for detecting NMR signals in high-field scenarios while effectively suppressing dipole-dipole couplings in the NV ensemble.
This approach enhances sensitivity by combining highly doped diamond substrates and elevated magnetic fields.
arXiv Detail & Related papers (2024-10-28T16:22:45Z) - Master equation-based model for infrared-based magnetometry with nitrogen-vacancy centers in diamond cavities: a path to sub-picotesla sensitivity at sub-millimeter scales [0.0]
We develop a master-equation treatment of optically detected magnetic resonance, incorporating IR light saturation effects.
We show that our model is compatible with experiments of IR-based NV center magnetometry.
We uncover the potential to achieve sensitivities in the order of sub-pico tesla, even for sub-millimeter scales.
arXiv Detail & Related papers (2024-07-08T03:01:31Z) - Single and double quantum transitions in spin-mixed states under
photo-excitation [0.0]
Electronic spins associated with the Nitrogen-Vacancy (NV) center in diamond offer an opportunity to study spin-related phenomena.
We study both single- and double-quantum transitions (SQT and DQT) in NV centers between spin-mixed states.
Such detailed understanding of spin-mixed states in NV centers under photo-excitation can help greatly in realizing NV-diamond platform's potential.
arXiv Detail & Related papers (2023-06-30T10:42:54Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Magnetic-Field-Dependent Stimulated Emission from Nitrogen-Vacancy
Centres in Diamond [0.0]
Negatively charged nitrogen-vacancy centres in diamond are promising quantum magnetic field sensors.
Laser threshold magnetometry has been a theoretical approach for the improvement of NV-centre ensemble sensitivity.
We use a macroscopic high-finesse laser cavity containing a highly NV-doped and low absorbing diamond gain medium that is pumped at 532nm and resonantly seeded at 710nm.
arXiv Detail & Related papers (2021-09-10T18:48:00Z) - Low temperature photo-physics of single NV centers in diamond [43.55994393060723]
We investigate the magnetic field dependent photo-physics of Nitrogen-Vacancy (NV) color centers in diamond under cryogenic conditions.
We observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin.
Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization.
arXiv Detail & Related papers (2021-05-17T18:00:02Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Optically Enhanced Electric Field Sensing Using Nitrogen-Vacancy
Ensembles [0.0]
Nitrogen-vacancy (NV) centers in diamond have shown promise as inherently localized electric-field sensors.
We demonstrate that a detailed understanding of the internal electric field environment enables enhanced sensitivity in the detection of external electric fields.
arXiv Detail & Related papers (2020-04-06T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.