EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture
- URL: http://arxiv.org/abs/2301.12805v1
- Date: Mon, 30 Jan 2023 11:56:08 GMT
- Title: EDSA-Ensemble: an Event Detection Sentiment Analysis Ensemble
Architecture
- Authors: Alexandru Petrescu and Ciprian-Octavian Truic\u{a} and Elena-Simona
Apostol and Adrian Paschke
- Abstract summary: Using Sentiment Analysis to understand the polarity of each message belonging to an event, as well as the entire event, can help to better understand the general and individual feelings of significant trends and the dynamics on online social networks.
We propose a new ensemble architecture, EDSA-Ensemble, that uses Event Detection and Sentiment Analysis to improve the detection of the polarity for current events from Social Media.
- Score: 63.85863519876587
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As global digitization continues to grow, technology becomes more affordable
and easier to use, and social media platforms thrive, becoming the new means of
spreading information and news. Communities are built around sharing and
discussing current events. Within these communities, users are enabled to share
their opinions about each event. Using Sentiment Analysis to understand the
polarity of each message belonging to an event, as well as the entire event,
can help to better understand the general and individual feelings of
significant trends and the dynamics on online social networks. In this context,
we propose a new ensemble architecture, EDSA-Ensemble (Event Detection
Sentiment Analysis Ensemble), that uses Event Detection and Sentiment Analysis
to improve the detection of the polarity for current events from Social Media.
For Event Detection, we use techniques based on Information Diffusion taking
into account both the time span and the topics. To detect the polarity of each
event, we preprocess the text and employ several Machine and Deep Learning
models to create an ensemble model. The preprocessing step includes several
word representation models, i.e., raw frequency, TFIDF, Word2Vec, and
Transformers. The proposed EDSA-Ensemble architecture improves the event
sentiment classification over the individual Machine and Deep Learning models.
Related papers
- Double Mixture: Towards Continual Event Detection from Speech [60.33088725100812]
Speech event detection is crucial for multimedia retrieval, involving the tagging of both semantic and acoustic events.
This paper tackles two primary challenges in speech event detection: the continual integration of new events without forgetting previous ones, and the disentanglement of semantic from acoustic events.
We propose a novel method, 'Double Mixture,' which merges speech expertise with robust memory mechanisms to enhance adaptability and prevent forgetting.
arXiv Detail & Related papers (2024-04-20T06:32:00Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - EnrichEvent: Enriching Social Data with Contextual Information for
Emerging Event Extraction [5.795017262737487]
We propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data.
Our proposed framework produces cluster chains for each event to show the evolving variation of the event through time.
arXiv Detail & Related papers (2023-07-29T21:37:55Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Unsupervised Key Event Detection from Massive Text Corpora [42.31889135421941]
We propose a new task, key event detection at the intermediate level, aiming to detect from a news corpus key events.
This task can bridge event understanding and structuring and is inherently challenging because of the thematic and temporal closeness of key events.
We develop an unsupervised key event detection framework, EvMine, that extracts temporally frequent peak phrases using a novel ttf-itf score.
arXiv Detail & Related papers (2022-06-08T20:31:02Z) - Audio-visual Representation Learning for Anomaly Events Detection in
Crowds [119.72951028190586]
This paper attempts to exploit multi-modal learning for modeling the audio and visual signals simultaneously.
We conduct the experiments on SHADE dataset, a synthetic audio-visual dataset in surveillance scenes.
We find introducing audio signals effectively improves the performance of anomaly events detection and outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T02:42:48Z) - COfEE: A Comprehensive Ontology for Event Extraction from text, with an
online annotation tool [3.8995911009078816]
Event Extraction (EE) seeks to derive information about specific incidents and their actors from the text.
EE is useful in many domains such as building a knowledge base, information retrieval, summarization and online monitoring systems.
COfEE consists of two hierarchy levels (event types and event sub-types) that include new categories relating to environmental issues, cyberspace, criminal activity and natural disasters.
arXiv Detail & Related papers (2021-07-21T19:43:22Z) - Streaming Social Event Detection and Evolution Discovery in
Heterogeneous Information Networks [90.3475746663728]
Events are happening in real-world and real-time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings or sports activities.
Social media platforms generate a lot of real-time text information regarding public events with different topics.
However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous.
arXiv Detail & Related papers (2021-04-02T02:13:10Z) - Understanding Crowd Behaviors in a Social Event by Passive WiFi Sensing
and Data Mining [21.343209622186606]
We propose a comprehensive data analysis framework to extract three types of patterns related to crowd behaviors in a large social event.
First, trajectories of the mobile devices are extracted from probe requests to reveal the spatial patterns of the crowds' movement.
Next, k-means and k-shape clustering algorithms are applied to extract temporal patterns visiting the crowds by days and locations.
arXiv Detail & Related papers (2020-02-05T03:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.