Combinatorial Causal Bandits without Graph Skeleton
- URL: http://arxiv.org/abs/2301.13392v4
- Date: Sun, 29 Sep 2024 02:13:39 GMT
- Title: Combinatorial Causal Bandits without Graph Skeleton
- Authors: Shi Feng, Nuoya Xiong, Wei Chen,
- Abstract summary: We study the CCB problem without the graph structure on binary general causal models and BGLMs.
We design a regret algorithm for BGLMs even without the graph skeleton and show that it still achieves $O(sqrtTln T)$ expected regret.
We propose another algorithm with $O(Tfrac23ln T)$ regret to remove the weight gap assumption.
- Score: 12.615590470530227
- License:
- Abstract: In combinatorial causal bandits (CCB), the learning agent chooses a subset of variables in each round to intervene and collects feedback from the observed variables to minimize expected regret or sample complexity. Previous works study this problem in both general causal models and binary generalized linear models (BGLMs). However, all of them require prior knowledge of causal graph structure or unrealistic assumptions. This paper studies the CCB problem without the graph structure on binary general causal models and BGLMs. We first provide an exponential lower bound of cumulative regrets for the CCB problem on general causal models. To overcome the exponentially large space of parameters, we then consider the CCB problem on BGLMs. We design a regret minimization algorithm for BGLMs even without the graph skeleton and show that it still achieves $O(\sqrt{T}\ln T)$ expected regret, as long as the causal graph satisfies a weight gap assumption. This asymptotic regret is the same as the state-of-art algorithms relying on the graph structure. Moreover, we propose another algorithm with $O(T^{\frac{2}{3}}\ln T)$ regret to remove the weight gap assumption.
Related papers
- Linear Causal Bandits: Unknown Graph and Soft Interventions [18.412177974475526]
designing causal bandit algorithms depends on two central categories of assumptions.
The problem in its general form, i.e., unknown graph and unknown intervention models, remains open.
This paper addresses this problem and establishes that in a graph with $N$ nodes, maximum in-degree $d$ and maximum causal path length $L$, after $T$ interaction rounds the regret upper bound scales.
arXiv Detail & Related papers (2024-11-04T18:50:39Z) - Improved Bound for Robust Causal Bandits with Linear Models [16.60875994745622]
This paper investigates the robustness of causal bandits in the face of temporal model fluctuations.
The proposed algorithm achieves nearly optimal $tildemathcalO(sqrtT)$ regret when $C$ is $o(sqrtT)$.
arXiv Detail & Related papers (2024-05-13T14:41:28Z) - Robust Causal Bandits for Linear Models [20.028245872662843]
Sequential design of experiments for optimizing a reward function in causal systems can be effectively modeled by the sequential design of interventions in causal bandits (CBs)
This paper addresses the robustness of CBs to such model fluctuations.
Cumulative regret is adopted as the design criteria, based on which the objective is to design a sequence of interventions that incur the smallest cumulative regret with respect to an oracle aware of the entire causal model and its fluctuations.
arXiv Detail & Related papers (2023-10-30T17:58:01Z) - Revisiting Weighted Strategy for Non-stationary Parametric Bandits [82.1942459195896]
This paper revisits the weighted strategy for non-stationary parametric bandits.
We propose a refined analysis framework, which produces a simpler weight-based algorithm.
Our new framework can be used to improve regret bounds of other parametric bandits.
arXiv Detail & Related papers (2023-03-05T15:11:14Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model.
It is assumed that the graph's structure is known and has $N$ nodes.
Two algorithms are proposed for the frequentist (UCB-based) and Bayesian settings.
arXiv Detail & Related papers (2022-08-26T16:21:31Z) - Combinatorial Causal Bandits [25.012065471684025]
In causal bandits, the learning agent chooses at most $K$ variables in each round to intervene, with the goal of minimizing expected regret on the target variable $Y$.
We study under the context of binary generalized linear models (BGLMs) with a succinct parametric representation of the causal models.
We present the algorithm BGLM-OFU for Markovian BGLMs based on the maximum likelihood estimation method, and show that it achieves $O(sqrtTlog T)$ regret, where $T$ is the time horizon.
arXiv Detail & Related papers (2022-06-04T14:14:58Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
We study the problem of regret minimization for episodic Reinforcement Learning (RL)
We focus on learning with general function classes and general model classes.
We show that a logarithmic regret bound is realizable by algorithms with $O(log T)$ switching cost.
arXiv Detail & Related papers (2022-03-03T02:55:55Z) - The Performance of the MLE in the Bradley-Terry-Luce Model in
$\ell_{\infty}$-Loss and under General Graph Topologies [76.61051540383494]
We derive novel, general upper bounds on the $ell_infty$ estimation error of the Bradley-Terry-Luce model.
We demonstrate that the derived bounds perform well and in some cases are sharper compared to known results.
arXiv Detail & Related papers (2021-10-20T23:46:35Z) - Causal Bandits on General Graphs [1.4502611532302039]
We study the problem of determining the best intervention in a Causal Bayesian Network (CBN) specified only by its causal graph.
We propose a simple regret minimization algorithm that takes as input a semi-Markovian causal graph with atomic interventions and possibly unobservable variables.
Our results indicate that the simple regret guarantee of our proposed algorithm can only be improved by considering more nuanced structural restrictions on the causal graph.
arXiv Detail & Related papers (2021-07-06T17:29:45Z) - Problem Dependent View on Structured Thresholding Bandit Problems [73.70176003598449]
We investigate the problem dependent regime in the Thresholding Bandit problem (TBP)
The objective of the learner is to output, at the end of a sequential game, the set of arms whose means are above a given threshold.
We provide upper and lower bounds for the probability of error in both the concave and monotone settings.
arXiv Detail & Related papers (2021-06-18T15:01:01Z) - Adversarial Linear Contextual Bandits with Graph-Structured Side
Observations [80.95090605985042]
A learning agent repeatedly chooses from a set of $K$ actions after being presented with a $d$-dimensional context vector.
The agent incurs and observes the loss of the chosen action, but also observes the losses of its neighboring actions in the observation structures.
Two efficient algorithms are developed based on textttEXP3.
arXiv Detail & Related papers (2020-12-10T15:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.