TopoBERT: Plug and Play Toponym Recognition Module Harnessing Fine-tuned
BERT
- URL: http://arxiv.org/abs/2301.13631v1
- Date: Tue, 31 Jan 2023 13:44:34 GMT
- Title: TopoBERT: Plug and Play Toponym Recognition Module Harnessing Fine-tuned
BERT
- Authors: Bing Zhou, Lei Zou, Yingjie Hu, Yi Qiang
- Abstract summary: TopoBERT, a toponym recognition module based on a one dimensional Convolutional Neural Network (CNN1D) and Bidirectional Representation from Transformers (BERT), is proposed and fine-tuned.
TopoBERT achieves state-of-the-art performance compared to the other five baseline models and can be applied to diverse toponym recognition tasks without additional training.
- Score: 11.446721140340575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extracting precise geographical information from textual contents is crucial
in a plethora of applications. For example, during hazardous events, a robust
and unbiased toponym extraction framework can provide an avenue to tie the
location concerned to the topic discussed by news media posts and pinpoint
humanitarian help requests or damage reports from social media. Early studies
have leveraged rule-based, gazetteer-based, deep learning, and hybrid
approaches to address this problem. However, the performance of existing tools
is deficient in supporting operations like emergency rescue, which relies on
fine-grained, accurate geographic information. The emerging pretrained language
models can better capture the underlying characteristics of text information,
including place names, offering a promising pathway to optimize toponym
recognition to underpin practical applications. In this paper, TopoBERT, a
toponym recognition module based on a one dimensional Convolutional Neural
Network (CNN1D) and Bidirectional Encoder Representation from Transformers
(BERT), is proposed and fine-tuned. Three datasets (CoNLL2003-Train,
Wikipedia3000, WNUT2017) are leveraged to tune the hyperparameters, discover
the best training strategy, and train the model. Another two datasets
(CoNLL2003-Test and Harvey2017) are used to evaluate the performance. Three
distinguished classifiers, linear, multi-layer perceptron, and CNN1D, are
benchmarked to determine the optimal model architecture. TopoBERT achieves
state-of-the-art performance (f1-score=0.865) compared to the other five
baseline models and can be applied to diverse toponym recognition tasks without
additional training.
Related papers
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - A Unified BEV Model for Joint Learning of 3D Local Features and Overlap
Estimation [12.499361832561634]
We present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation.
Our method significantly outperforms existing methods on overlap prediction, especially in scenes with small overlaps.
arXiv Detail & Related papers (2023-02-28T12:01:16Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Research on Dual Channel News Headline Classification Based on ERNIE
Pre-training Model [13.222137788045416]
The proposed model improves the accuracy, precision and F1-score of news headline classification compared with the traditional neural network model.
It can perform well in the multi-classification application of news headline text under large data volume.
arXiv Detail & Related papers (2022-02-14T10:44:12Z) - Graph Convolution for Re-ranking in Person Re-identification [40.9727538382413]
We propose a graph-based re-ranking method to improve learned features while still keeping Euclidean distance as the similarity metric.
A simple yet effective method is proposed to generate a profile vector for each tracklet in videos, which helps extend our method to video re-ID.
arXiv Detail & Related papers (2021-07-05T18:40:43Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
This paper proposes a fully attentional model - em Point Transformer, for deriving a rich point cloud representation.
The model's shape classification and retrieval performance are evaluated on a large-scale urban dataset - RoofN3D and a standard benchmark dataset ModelNet40.
The proposed method outperforms other state-of-the-art models in the RoofN3D dataset, gives competitive results in the ModelNet40 benchmark, and showcases high robustness to various unseen point corruptions.
arXiv Detail & Related papers (2020-11-08T08:11:02Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
Large-scale language models such as BERT have achieved state-of-the-art performance across a wide range of NLP tasks.
Recent studies show that such BERT-based models are vulnerable facing the threats of textual adversarial attacks.
We propose InfoBERT, a novel learning framework for robust fine-tuning of pre-trained language models.
arXiv Detail & Related papers (2020-10-05T20:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.