A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds
- URL: http://arxiv.org/abs/2301.13656v3
- Date: Tue, 16 Apr 2024 16:52:18 GMT
- Title: A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds
- Authors: Raphael Sulzer, Renaud Marlet, Bruno Vallet, Loic Landrieu,
- Abstract summary: We present both traditional and learning-based methods for surface reconstruction from point clouds.
Traditional approaches often simplify the problem by imposing handcrafted priors on either the input point clouds or the resulting surface.
Deep learning models have the capability directly learn the properties of input point clouds.
- Score: 12.58355339505807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive survey and benchmark of both traditional and learning-based methods for surface reconstruction from point clouds. This task is particularly challenging for real-world acquisitions due to factors like noise, outliers, non-uniform sampling, and missing data. Traditional approaches often simplify the problem by imposing handcrafted priors on either the input point clouds or the resulting surface, a process that can necessitate tedious hyperparameter tuning. Conversely, deep learning models have the capability to directly learn the properties of input point clouds and desired surfaces from data. We study the influence of these handcrafted and learned priors on the precision and robustness of surface reconstruction techniques. We evaluate various time-tested and contemporary methods in a standardized manner. When both trained and evaluated on point clouds with identical characteristics, the learning-based models consistently produce superior surfaces compared to their traditional counterparts$\unicode{x2013}$even in scenarios involving novel shape categories. However, traditional methods demonstrate greater resilience to the diverse array of point cloud anomalies commonly found in real-world 3D acquisitions. For the benefit of the research community, we make our code and datasets available, inviting further enhancements to learning-based surface reconstruction. This can be accessed at https://github.com/raphaelsulzer/dsr-benchmark .
Related papers
- Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
It is vital to infer signed distance functions (SDFs) from 3D point clouds.
We present a neural network to directly infer SDFs from single sparse point clouds.
arXiv Detail & Related papers (2023-03-25T15:56:50Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - Learning Modified Indicator Functions for Surface Reconstruction [10.413340575612233]
We propose a learning-based approach for implicit surface reconstruction from raw point clouds without normals.
Our method is inspired by Gauss Lemma in potential energy theory, which gives an explicit integral formula for the indicator functions.
We design a novel deep neural network to perform surface integral and learn the modified indicator functions from un-oriented and noisy point clouds.
arXiv Detail & Related papers (2021-11-18T05:30:35Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud
Registration [31.108056345511976]
OMNet is a global feature based iterative network for partial-to-partial point cloud registration.
We learn masks in a coarse-to-fine manner to reject non-overlapping regions, which converting the partial-to-partial registration to the registration of the same shapes.
arXiv Detail & Related papers (2021-03-01T11:59:59Z) - Sign-Agnostic Implicit Learning of Surface Self-Similarities for Shape
Modeling and Reconstruction from Raw Point Clouds [35.80493796701116]
We propose to learn a local implicit surface network for a shared, adaptive modeling of the entire surface of an object.
We also enhance the leveraging of surface self-similarities by improving correlations among the optimized latent codes of individual surface patches.
We term our framework as Sign-Agnostic Implicit Learning of Surface Self-Similarities (SAIL-S3)
arXiv Detail & Related papers (2020-12-14T13:33:22Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z) - Points2Surf: Learning Implicit Surfaces from Point Cloud Patches [35.2104818061992]
A key step in any scanning-based computation is to convert unordered point clouds to a surface.
We present Points2Surf, a novel patch-based learning framework that produces accurate surfaces directly from raw scans without normals.
arXiv Detail & Related papers (2020-07-20T20:25:39Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
We propose to leverage the input point cloud as much as possible, by only adding connectivity information to existing points.
Our key innovation is a surrogate of local connectivity, calculated by comparing the intrinsic/extrinsic metrics.
We demonstrate that our method can not only preserve details, handle ambiguous structures, but also possess strong generalizability to unseen categories.
arXiv Detail & Related papers (2020-07-17T22:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.