Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees
- URL: http://arxiv.org/abs/2302.00037v2
- Date: Tue, 23 May 2023 22:10:20 GMT
- Title: Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees
- Authors: Jacob Imola, Alessandro Epasto, Mohammad Mahdian, Vincent Cohen-Addad,
Vahab Mirrokni
- Abstract summary: We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
- Score: 79.59010418610625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hierarchical Clustering is a popular unsupervised machine learning method
with decades of history and numerous applications. We initiate the study of
differentially private approximation algorithms for hierarchical clustering
under the rigorous framework introduced by (Dasgupta, 2016). We show strong
lower bounds for the problem: that any $\epsilon$-DP algorithm must exhibit
$O(|V|^2/ \epsilon)$-additive error for an input dataset $V$. Then, we exhibit
a polynomial-time approximation algorithm with $O(|V|^{2.5}/
\epsilon)$-additive error, and an exponential-time algorithm that meets the
lower bound. To overcome the lower bound, we focus on the stochastic block
model, a popular model of graphs, and, with a separation assumption on the
blocks, propose a private $1+o(1)$ approximation algorithm which also recovers
the blocks exactly. Finally, we perform an empirical study of our algorithms
and validate their performance.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Efficient Mean Estimation with Pure Differential Privacy via a
Sum-of-Squares Exponential Mechanism [16.996435043565594]
We give the first-time algorithm to estimate the mean of a $d$-positive probability distribution with covariance from $tildeO(d)$ independent samples subject to pure differential privacy.
Our main technique is a new approach to use the powerful Sum of Squares method (SoS) to design differentially private algorithms.
arXiv Detail & Related papers (2021-11-25T09:31:15Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Empirical Risk Minimization in the Non-interactive Local Model of
Differential Privacy [26.69391745812235]
We study the Empirical Risk Minimization (ERM) problem in the noninteractive Local Differential Privacy (LDP) model.
Previous research indicates that the sample complexity, to achieve error $alpha, needs to be depending on dimensionality $p$ for general loss functions.
arXiv Detail & Related papers (2020-11-11T17:48:00Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.