Experimental observation on a low-rank tensor model for eigenvalue
problems
- URL: http://arxiv.org/abs/2302.00538v1
- Date: Wed, 1 Feb 2023 16:03:41 GMT
- Title: Experimental observation on a low-rank tensor model for eigenvalue
problems
- Authors: Jun Hu and Pengzhan Jin
- Abstract summary: We utilize a low-rank tensor model (LTM) as a function approxor, combined with the gradient descent method, to solve evalue problems.
- Score: 3.378115152915894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we utilize a low-rank tensor model (LTM) as a function approximator,
combined with the gradient descent method, to solve eigenvalue problems
including the Laplacian operator and the harmonic oscillator. Experimental
results show the superiority of the polynomial-based low-rank tensor model
(PLTM) compared to the tensor neural network (TNN). We also test such low-rank
architectures for the classification problem on the MNIST dataset.
Related papers
- Low-Rank Tensor Learning by Generalized Nonconvex Regularization [25.115066273660478]
We study the problem of low-rank tensor learning, where only a few samples are observed the underlying tensor.
A family of non tensor learning functions are employed to characterize the low-rankness of the underlying tensor.
An algorithm designed to solve the resulting majorization-minimization is proposed.
arXiv Detail & Related papers (2024-10-24T03:33:20Z) - Structured Low-Rank Tensors for Generalized Linear Models [15.717917936953718]
This work investigates a new low-rank tensor model, called Low Separation Rank (LSR), in Generalized Linear Model (GLM) problems.
The LSR model generalizes the well-known Tucker and CANDECOMP/PARAFAC (CP) models.
Experiments on synthetic datasets demonstrate the efficacy of the proposed LSR tensor model for three regression types.
arXiv Detail & Related papers (2023-08-05T17:20:41Z) - Statistical and computational rates in high rank tensor estimation [11.193504036335503]
Higher-order tensor datasets arise commonly in recommendation systems, neuroimaging, and social networks.
We consider a generative latent variable tensor model that incorporates both high rank and low rank models.
We show that the statistical-computational gap emerges only for latent variable tensors of order 3 or higher.
arXiv Detail & Related papers (2023-04-08T15:34:26Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
Fourier Neural Operator (FNO) was the first to simulate turbulent flow with zero-shot super-resolution.
We generate adversarial examples for FNO based on norm-bounded data input perturbations.
Our results show that the model's robustness degrades rapidly with increasing perturbation levels.
arXiv Detail & Related papers (2022-04-08T19:19:42Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
This paper explores the problem of multi-view spectral clustering (MVSC) based on tensor low-rank modeling.
We design a novel structured tensor low-rank norm tailored to MVSC.
We show that the proposed method outperforms state-of-the-art methods to a significant extent.
arXiv Detail & Related papers (2020-04-30T11:52:12Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - Tensor denoising and completion based on ordinal observations [11.193504036335503]
We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations.
We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees.
We show that the proposed estimator is minimax optimal under the class of low-rank models.
arXiv Detail & Related papers (2020-02-16T07:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.