Temperature gradient and asymmetric steady state correlations in
dissipatively coupled cascaded optomechanical systems
- URL: http://arxiv.org/abs/2302.00698v2
- Date: Wed, 27 Sep 2023 18:00:02 GMT
- Title: Temperature gradient and asymmetric steady state correlations in
dissipatively coupled cascaded optomechanical systems
- Authors: Claudio Pellitteri, G.Massimo Palma and Salvatore Lorenzo
- Abstract summary: We study the dynamics of a pair of optomechanical systems interacting dissipatively with a wave guide in a unidirectional way.
We explore both classical and quantum correlations established between the modes in both the transient and in the stationary regime.
We show that this unidirectional coupling establishes a temperature gradient between the mirrors, depending on the frequencies' detuning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interaction between a light mode and a mechanical oscillator via
radiation pressure in optomechanical systems is an excellent platform for a
multitude of applications in quantum technologies. In this work we study the
dynamics of a pair of optomechanical systems interacting dissipatively with a
wave guide in a unidirectional way. Focusing on the regime where the cavity
modes can be adiabatically eliminated we derive an effective coupling between
the two mechanical modes and we explore both classical and quantum correlations
established between the modes in both in the transient and in the stationary
regime, highlighting their asymmmetrical nature due to the unidirectional
coupling, and we find that a constant amount of steady correlations can exist
at long times. Furthermore we show that this unidirectional coupling
establishes a temperature gradient between the mirrors, depending on the
frequencies' detuning. We additionally analyze the power spectrum of the output
guide field and we show how, thanks to the chiral coupling, from such spectrum
it is possible to reconstruct the spectra of each single mirror.
Related papers
- Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dissipative and dispersive cavity optomechanics with a
frequency-dependent mirror [0.0]
microcavity-based optomechanical systems are placed in the unresolved-sideband regime, preventing sideband-based ground-state cooling.
We analyze such an optomechanical system, whereby one of the mirrors is strongly frequency-dependent, i.e., a suspended Fano mirror.
We formulate a quantum-coupled-mode description that includes both the standard dispersive optomechanical coupling as well as dissipative coupling.
arXiv Detail & Related papers (2023-11-26T14:20:25Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Optical coupling control of isolated mechanical resonators [0.0]
We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard optomechanical interaction.
We show that the quantum model, under this parameter range and external optical driving, may be approximated into parametric interaction models for all involved modes.
arXiv Detail & Related papers (2023-05-26T03:32:01Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optical nonreciprocal response and conversion in a Tavis-Cummings
coupling optomechanical system [4.419156740280762]
We propose a scheme to realize optical nonreciprocal response and conversion in a Tavis-Cummings coupling optomechanical system.
We find that the phases between the mechanical mode and the optical mode, as well as between the mechanical mode and the dopant mode, are correlated with each other.
Compared with the conventional optomechanical systems, the Tavis-Cummings coupling optomechanical system exhibits richer nonreciprocal conversion phenomena.
arXiv Detail & Related papers (2020-06-19T07:20:54Z) - Continuous-variable pairwise entanglement based on optoelectromechanical
system [7.922177718603974]
We in theory analyze the continuous-variable pairwise entanglement between microwave modes based on a hybrid optoelectromechanical system.
With experimentally reachable parameter settings, wanted entanglement can be acheived when the pair number up to 10, and more is also available.
arXiv Detail & Related papers (2020-03-28T04:56:51Z) - Switching dynamics of single and coupled VO2-based oscillators as
elements of neural networks [55.41644538483948]
We report on the switching dynamics of both single and coupled VO2-based oscillators, with resistive and capacitive coupling, and explore the capability of their application in neural networks.
For the resistive coupling, it is shown that synchronization takes place at a certain value of the coupling resistance, though it is unstable and a synchronization failure occurs periodically.
For the capacitive coupling, two synchronization modes, with weak and strong coupling, are found. The transition between these modes is accompanied by chaotic oscillations.
arXiv Detail & Related papers (2020-01-07T02:16:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.