Online Continual Learning via the Knowledge Invariant and Spread-out
Properties
- URL: http://arxiv.org/abs/2302.00858v1
- Date: Thu, 2 Feb 2023 04:03:38 GMT
- Title: Online Continual Learning via the Knowledge Invariant and Spread-out
Properties
- Authors: Ya-nan Han, Jian-wei Liu
- Abstract summary: Key challenge in continual learning is catastrophic forgetting.
We propose a new method, named Online Continual Learning via the Knowledge Invariant and Spread-out Properties (OCLKISP)
We empirically evaluate our proposed method on four popular benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200 and Split Tiny-Image-Net.
- Score: 4.109784267309124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of continual learning is to provide intelligent agents that are
capable of learning continually a sequence of tasks using the knowledge
obtained from previous tasks while performing well on prior tasks. However, a
key challenge in this continual learning paradigm is catastrophic forgetting,
namely adapting a model to new tasks often leads to severe performance
degradation on prior tasks. Current memory-based approaches show their success
in alleviating the catastrophic forgetting problem by replaying examples from
past tasks when new tasks are learned. However, these methods are infeasible to
transfer the structural knowledge from previous tasks i.e., similarities or
dissimilarities between different instances. Furthermore, the learning bias
between the current and prior tasks is also an urgent problem that should be
solved. In this work, we propose a new method, named Online Continual Learning
via the Knowledge Invariant and Spread-out Properties (OCLKISP), in which we
constrain the evolution of the embedding features via Knowledge Invariant and
Spread-out Properties (KISP). Thus, we can further transfer the inter-instance
structural knowledge of previous tasks while alleviating the forgetting due to
the learning bias. We empirically evaluate our proposed method on four popular
benchmarks for continual learning: Split CIFAR 100, Split SVHN, Split CUB200
and Split Tiny-Image-Net. The experimental results show the efficacy of our
proposed method compared to the state-of-the-art continual learning algorithms.
Related papers
- Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Hierarchically Structured Task-Agnostic Continual Learning [0.0]
We take a task-agnostic view of continual learning and develop a hierarchical information-theoretic optimality principle.
We propose a neural network layer, called the Mixture-of-Variational-Experts layer, that alleviates forgetting by creating a set of information processing paths.
Our approach can operate in a task-agnostic way, i.e., it does not require task-specific knowledge, as is the case with many existing continual learning algorithms.
arXiv Detail & Related papers (2022-11-14T19:53:15Z) - Beyond Not-Forgetting: Continual Learning with Backward Knowledge
Transfer [39.99577526417276]
In continual learning (CL) an agent can improve the learning performance of both a new task and old' tasks.
Most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks.
We propose a new CL method with Backward knowlEdge tRansfer (CUBER) for a fixed capacity neural network without data replay.
arXiv Detail & Related papers (2022-11-01T23:55:51Z) - Toward Sustainable Continual Learning: Detection and Knowledge
Repurposing of Similar Tasks [31.095642850920385]
We introduce a paradigm where the continual learner gets a sequence of mixed similar and dissimilar tasks.
We propose a new continual learning framework that uses a task similarity detection function that does not require additional learning.
Our experiments show that the proposed framework performs competitively on widely used computer vision benchmarks.
arXiv Detail & Related papers (2022-10-11T19:35:30Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Continual Prompt Tuning for Dialog State Tracking [58.66412648276873]
A desirable dialog system should be able to continually learn new skills without forgetting old ones.
We present Continual Prompt Tuning, a parameter-efficient framework that not only avoids forgetting but also enables knowledge transfer between tasks.
arXiv Detail & Related papers (2022-03-13T13:22:41Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Learning Invariant Representation for Continual Learning [5.979373021392084]
A key challenge in Continual learning is catastrophically forgetting previously learned tasks when the agent faces a new one.
We propose a new pseudo-rehearsal-based method, named learning Invariant Representation for Continual Learning (IRCL)
Disentangling the shared invariant representation helps to learn continually a sequence of tasks, while being more robust to forgetting and having better knowledge transfer.
arXiv Detail & Related papers (2021-01-15T15:12:51Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Bilevel Continual Learning [76.50127663309604]
We present a novel framework of continual learning named "Bilevel Continual Learning" (BCL)
Our experiments on continual learning benchmarks demonstrate the efficacy of the proposed BCL compared to many state-of-the-art methods.
arXiv Detail & Related papers (2020-07-30T16:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.