Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective
- URL: http://arxiv.org/abs/2302.01735v5
- Date: Tue, 24 Oct 2023 00:40:26 GMT
- Title: Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective
- Authors: Chenyu You, Weicheng Dai, Yifei Min, Fenglin Liu, David A. Clifton, S
Kevin Zhou, Lawrence Hamilton Staib, James S Duncan
- Abstract summary: We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
- Score: 51.70661197256033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For medical image segmentation, contrastive learning is the dominant practice
to improve the quality of visual representations by contrasting semantically
similar and dissimilar pairs of samples. This is enabled by the observation
that without accessing ground truth labels, negative examples with truly
dissimilar anatomical features, if sampled, can significantly improve the
performance. In reality, however, these samples may come from similar
anatomical regions and the models may struggle to distinguish the minority
tail-class samples, making the tail classes more prone to misclassification,
both of which typically lead to model collapse. In this paper, we propose ARCO,
a semi-supervised contrastive learning (CL) framework with stratified group
theory for medical image segmentation. In particular, we first propose building
ARCO through the concept of variance-reduced estimation and show that certain
variance-reduction techniques are particularly beneficial in pixel/voxel-level
segmentation tasks with extremely limited labels. Furthermore, we theoretically
prove these sampling techniques are universal in variance reduction. Finally,
we experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D
medical and three semantic segmentation datasets, with different label
settings, and our methods consistently outperform state-of-the-art
semi-supervised methods. Additionally, we augment the CL frameworks with these
sampling techniques and demonstrate significant gains over previous methods. We
believe our work is an important step towards semi-supervised medical image
segmentation by quantifying the limitation of current self-supervision
objectives for accomplishing such challenging safety-critical tasks.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
Semi-supervised medical image segmentation offers a promising solution for large-scale medical image analysis.
This paper proposes a cross-supervised learning framework based on dual classifiers (DC-Net)
Experiments on LA and Pancreas-CT dataset illustrate that DC-Net outperforms other state-of-the-art methods for semi-supervised segmentation.
arXiv Detail & Related papers (2023-05-25T16:23:39Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.