Privacy concerns from variances in spatial navigability in VR
- URL: http://arxiv.org/abs/2302.02525v1
- Date: Mon, 6 Feb 2023 01:48:59 GMT
- Title: Privacy concerns from variances in spatial navigability in VR
- Authors: Aryabrata Basu, Mohammad Jahed Murad Sunny, Jayasri Sai Nikitha
Guthula
- Abstract summary: Current Virtual Reality (VR) input devices make it possible to navigate a virtual environment and record immersive, personalized data regarding the user's movement and specific behavioral habits.
In this article, the authors propose to investigate Machine Learning driven learning algorithms that try to learn with human users co-operatively and can be used to countermand existing privacy concerns in VR.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Current Virtual Reality (VR) input devices make it possible to navigate a
virtual environment and record immersive, personalized data regarding the
user's movement and specific behavioral habits, which brings the question of
the user's privacy concern to the forefront. In this article, the authors
propose to investigate Machine Learning driven learning algorithms that try to
learn with human users co-operatively and can be used to countermand existing
privacy concerns in VR but could also be extended to Augmented Reality (AR)
platforms.
Related papers
- LocoVR: Multiuser Indoor Locomotion Dataset in Virtual Reality [8.035381442028076]
We present LocoVR, a dataset of 7000+ two-person trajectories captured in virtual reality from over 130 different indoor home environments.
Our evaluation shows that LocoVR significantly enhances model performance in three practical indoor tasks utilizing human trajectories.
arXiv Detail & Related papers (2024-10-09T00:45:02Z) - Tremor Reduction for Accessible Ray Based Interaction in VR Applications [0.0]
Many traditional 2D interface interaction methods have been directly converted to work in a VR space with little alteration to the input mechanism.
In this paper we propose the use of a low pass filter, to normalize user input noise, alleviating fine motor requirements during ray-based interaction.
arXiv Detail & Related papers (2024-05-12T17:07:16Z) - An Empirical Study on Oculus Virtual Reality Applications: Security and
Privacy Perspectives [46.995904896724994]
This paper develops a security and privacy assessment tool, namely the VR-SP detector for VR apps.
Using the VR-SP detector, we conduct a comprehensive empirical study on 500 popular VR apps.
We find that a number of security vulnerabilities and privacy leaks widely exist in VR apps.
arXiv Detail & Related papers (2024-02-21T13:53:25Z) - Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data [49.68609500290361]
Recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan.
We present in this paper a state-of-the-art VR identification model that can convincingly bypass known defensive countermeasures.
arXiv Detail & Related papers (2023-11-09T01:34:22Z) - Privacy Preservation in Artificial Intelligence and Extended Reality
(AI-XR) Metaverses: A Survey [3.0151762748441624]
The metaverse envisions a virtual universe where individuals can interact, create, and participate in a wide range of activities.
Privacy in the metaverse is a critical concern as the concept evolves and immersive virtual experiences become more prevalent.
We explore various privacy challenges that future metaverses are expected to face, given their reliance on AI for tracking users.
arXiv Detail & Related papers (2023-09-19T11:56:12Z) - Eye-tracked Virtual Reality: A Comprehensive Survey on Methods and
Privacy Challenges [33.50215933003216]
This survey focuses on eye tracking in virtual reality (VR) and the privacy implications of those possibilities.
We first cover major works in eye tracking, VR, and privacy areas between the years 2012 and 2022.
We focus on eye-based authentication as well as computational methods to preserve the privacy of individuals and their eye-tracking data in VR.
arXiv Detail & Related papers (2023-05-23T14:02:38Z) - Unique Identification of 50,000+ Virtual Reality Users from Head & Hand
Motion Data [58.27542320038834]
We show that a large number of real VR users can be uniquely and reliably identified across multiple sessions using just their head and hand motion.
After training a classification model on 5 minutes of data per person, a user can be uniquely identified amongst the entire pool of 50,000+ with 94.33% accuracy from 100 seconds of motion.
This work is the first to truly demonstrate the extent to which biomechanics may serve as a unique identifier in VR, on par with widely used biometrics such as facial or fingerprint recognition.
arXiv Detail & Related papers (2023-02-17T15:05:18Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
We design a learning-based neural interface for natural and intuitive force inputs in VR/AR.
We show that our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration.
We envision our findings to push forward research towards more realistic physicality in future VR/AR.
arXiv Detail & Related papers (2022-10-03T20:51:25Z) - Learning Effect of Lay People in Gesture-Based Locomotion in Virtual
Reality [81.5101473684021]
Some of the most promising methods are gesture-based and do not require additional handheld hardware.
Recent work focused mostly on user preference and performance of the different locomotion techniques.
This work is investigated whether and how quickly users can adapt to a hand gesture-based locomotion system in VR.
arXiv Detail & Related papers (2022-06-16T10:44:16Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.