Recommender Systems: A Primer
- URL: http://arxiv.org/abs/2302.02579v1
- Date: Mon, 6 Feb 2023 06:19:05 GMT
- Title: Recommender Systems: A Primer
- Authors: Pablo Castells and Dietmar Jannach
- Abstract summary: We provide an overview of the traditional formulation of the recommendation problem.
We then review the classical algorithmic paradigms for item retrieval and ranking.
We discuss a number of recent developments in recommender systems research.
- Score: 7.487718119544156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized recommendations have become a common feature of modern online
services, including most major e-commerce sites, media platforms and social
networks. Today, due to their high practical relevance, research in the area of
recommender systems is flourishing more than ever. However, with the new
application scenarios of recommender systems that we observe today, constantly
new challenges arise as well, both in terms of algorithmic requirements and
with respect to the evaluation of such systems. In this paper, we first provide
an overview of the traditional formulation of the recommendation problem. We
then review the classical algorithmic paradigms for item retrieval and ranking
and elaborate how such systems can be evaluated. Afterwards, we discuss a
number of recent developments in recommender systems research, including
research on session-based recommendation, biases in recommender systems, and
questions regarding the impact and value of recommender systems in practice.
Related papers
- RecRec: Algorithmic Recourse for Recommender Systems [41.97186998947909]
It is crucial for all stakeholders to understand the model's rationale behind making certain predictions and recommendations.
This is especially true for the content providers whose livelihoods depend on the recommender system.
We propose a recourse framework for recommender systems, targeted towards the content providers.
arXiv Detail & Related papers (2023-08-28T22:26:50Z) - Impression-Aware Recommender Systems [57.38537491535016]
Novel data sources bring new opportunities to improve the quality of recommender systems.
Researchers may use impressions to refine user preferences and overcome the current limitations in recommender systems research.
We present a systematic literature review on recommender systems using impressions.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Recent Developments in Recommender Systems: A Survey [34.810859384592355]
The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems.
The survey analyzes the robustness, data bias, and fairness issues in recommender systems.
The study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field.
arXiv Detail & Related papers (2023-06-22T05:51:49Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - A Comprehensive Review on Non-Neural Networks Collaborative Filtering
Recommendation Systems [1.3124513975412255]
Collaborative filtering (CF) uses the known preference of a group of users to make predictions and recommendations about the unknown preferences of other users.
First introduced in the 1990s, a wide variety of increasingly successful models have been proposed.
Due to the success of machine learning techniques in many areas, there has been a growing emphasis on the application of such algorithms in recommendation systems.
arXiv Detail & Related papers (2021-06-20T11:13:33Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - Recommender Systems for the Internet of Things: A Survey [53.865011795953706]
Recommendation represents a vital stage in developing and promoting the benefits of the Internet of Things.
Traditional recommender systems fail to exploit ever-growing, dynamic, and heterogeneous IoT data.
arXiv Detail & Related papers (2020-07-14T01:24:44Z) - A Systematic Review on Context-Aware Recommender Systems using Deep
Learning and Embeddings [0.0]
Context-Aware Recommender Systems were created, accomplishing state-of-the-art results.
Deep Learning and Embeddings techniques are being applied to improve Context-Aware Recommender Systems.
arXiv Detail & Related papers (2020-07-09T13:23:40Z) - Survey for Trust-aware Recommender Systems: A Deep Learning Perspective [48.2733163413522]
It becomes critical to embrace a trustworthy recommender system.
This survey provides a systemic summary of three categories of trust-aware recommender systems.
arXiv Detail & Related papers (2020-04-08T02:11:55Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.