A Log-Linear Non-Parametric Online Changepoint Detection Algorithm based
on Functional Pruning
- URL: http://arxiv.org/abs/2302.02718v2
- Date: Thu, 11 Jan 2024 10:16:59 GMT
- Title: A Log-Linear Non-Parametric Online Changepoint Detection Algorithm based
on Functional Pruning
- Authors: Gaetano Romano, Idris A Eckley, Paul Fearnhead
- Abstract summary: We build a flexible nonparametric approach to detect a change in the distribution of a sequence.
Thanks to functional pruning ideas, NP-FOCuS has a computational cost that is log-linear in the number of observations.
In terms of detection power, NP-FOCuS is seen to outperform current nonparametric online changepoint techniques in a variety of settings.
- Score: 5.202524136984542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online changepoint detection aims to detect anomalies and changes in
real-time in high-frequency data streams, sometimes with limited available
computational resources. This is an important task that is rooted in many
real-world applications, including and not limited to cybersecurity, medicine
and astrophysics. While fast and efficient online algorithms have been recently
introduced, these rely on parametric assumptions which are often violated in
practical applications. Motivated by data streams from the telecommunications
sector, we build a flexible nonparametric approach to detect a change in the
distribution of a sequence. Our procedure, NP-FOCuS, builds a sequential
likelihood ratio test for a change in a set of points of the empirical
cumulative density function of our data. This is achieved by keeping track of
the number of observations above or below those points. Thanks to functional
pruning ideas, NP-FOCuS has a computational cost that is log-linear in the
number of observations and is suitable for high-frequency data streams. In
terms of detection power, NP-FOCuS is seen to outperform current nonparametric
online changepoint techniques in a variety of settings. We demonstrate the
utility of the procedure on both simulated and real data.
Related papers
- Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Online Kernel CUSUM for Change-Point Detection [12.383181837411469]
We present a computationally efficient online kernel Cumulative Sum (CUSUM) method for change-point detection.
Our approach exhibits increased sensitivity to small changes compared to existing kernel-based change-point detection methods.
arXiv Detail & Related papers (2022-11-28T05:08:30Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Online Changepoint Detection on a Budget [5.077509096253692]
Changepoints are abrupt variations in the underlying distribution of data.
We propose an online changepoint detection algorithm which compares favorably with offline changepoint detection algorithms.
arXiv Detail & Related papers (2022-01-11T00:20:33Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Fast Online Changepoint Detection via Functional Pruning CUSUM
statistics [2.867517731896504]
Functional Online CuSUM (FOCuS) is equivalent to running earlier methods simultaneously for all sizes of window, or all possible values for the size of change.
We show how FOCuS can be applied to a number of different change in mean scenarios, and demonstrate its practical utility.
arXiv Detail & Related papers (2021-10-15T17:08:06Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
Online algorithms are popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches.
When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy.
We establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models.
arXiv Detail & Related papers (2020-04-04T14:16:27Z) - High-dimensional, multiscale online changepoint detection [7.502070498889449]
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$- Gaussian data stream may undergo a change in mean.
The algorithm is online in the sense that both its storage requirements and worst-case computational complexity per new observation are independent of the number of previous observations.
Simulations confirm the practical effectiveness of our proposal, which is implemented in the R package 'ocd', and we also demonstrate its utility on a seismology data set.
arXiv Detail & Related papers (2020-03-07T21:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.