Curriculum Graph Machine Learning: A Survey
- URL: http://arxiv.org/abs/2302.02926v2
- Date: Tue, 12 Mar 2024 23:54:04 GMT
- Title: Curriculum Graph Machine Learning: A Survey
- Authors: Haoyang Li, Xin Wang, Wenwu Zhu
- Abstract summary: curriculum graph machine learning (Graph CL) integrates the strength of graph machine learning and curriculum learning.
This paper comprehensively overview approaches on Graph CL and present a detailed survey of recent advances in this direction.
- Score: 51.89783017927647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph machine learning has been extensively studied in both academia and
industry. However, in the literature, most existing graph machine learning
models are designed to conduct training with data samples in a random order,
which may suffer from suboptimal performance due to ignoring the importance of
different graph data samples and their training orders for the model
optimization status. To tackle this critical problem, curriculum graph machine
learning (Graph CL), which integrates the strength of graph machine learning
and curriculum learning, arises and attracts an increasing amount of attention
from the research community. Therefore, in this paper, we comprehensively
overview approaches on Graph CL and present a detailed survey of recent
advances in this direction. Specifically, we first discuss the key challenges
of Graph CL and provide its formal problem definition. Then, we categorize and
summarize existing methods into three classes based on three kinds of graph
machine learning tasks, i.e., node-level, link-level, and graph-level tasks.
Finally, we share our thoughts on future research directions. To the best of
our knowledge, this paper is the first survey for curriculum graph machine
learning.
Related papers
- A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - Towards Data-centric Graph Machine Learning: Review and Outlook [120.64417630324378]
We introduce a systematic framework, Data-centric Graph Machine Learning (DC-GML), that encompasses all stages of the graph data lifecycle.
A thorough taxonomy of each stage is presented to answer three critical graph-centric questions.
We pinpoint the future prospects of the DC-GML domain, providing insights to navigate its advancements and applications.
arXiv Detail & Related papers (2023-09-20T00:40:13Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions [58.220137936626315]
This paper extensively discusses automated graph machine learning approaches.
We introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning.
Also, we describe a tailored benchmark that supports unified, reproducible, and efficient evaluations.
arXiv Detail & Related papers (2022-01-04T18:31:31Z) - Graph Learning: A Survey [38.245120261668816]
We present a comprehensive overview on the state-of-the-art of graph learning.
Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning.
We examine graph learning applications in areas such as text, images, science, knowledge graphs, and optimization.
arXiv Detail & Related papers (2021-05-03T09:06:01Z) - Automated Machine Learning on Graphs: A Survey [81.21692888288658]
This paper is the first systematic and comprehensive review of automated machine learning on graphs.
We focus on hyper- parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning.
In the end, we share our insights on future research directions for automated graph machine learning.
arXiv Detail & Related papers (2021-03-01T04:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.