Using t-distributed stochastic neighbor embedding for visualization and
segmentation of 3D point clouds of plants
- URL: http://arxiv.org/abs/2302.03442v1
- Date: Tue, 7 Feb 2023 12:55:15 GMT
- Title: Using t-distributed stochastic neighbor embedding for visualization and
segmentation of 3D point clouds of plants
- Authors: Helin Dutagaci
- Abstract summary: t-SNE is proposed to embed 3D point clouds of plants into 2D space for plant characterization.
The perplexity parameter of t-SNE allows 2D rendering of plant structures at various organizational levels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, the use of t-SNE is proposed to embed 3D point clouds of plants
into 2D space for plant characterization. It is demonstrated that t-SNE
operates as a practical tool to flatten and visualize a complete 3D plant model
in 2D space. The perplexity parameter of t-SNE allows 2D rendering of plant
structures at various organizational levels. Aside from the promise of serving
as a visualization tool for plant scientists, t-SNE also provides a gateway for
processing 3D point clouds of plants using their embedded counterparts in 2D.
In this paper, simple methods were proposed to perform semantic segmentation
and instance segmentation via grouping the embedded 2D points. The evaluation
of these methods on a public 3D plant data set conveys the potential of t-SNE
for enabling of 2D implementation of various steps involved in automatic 3D
phenotyping pipelines.
Related papers
- Learning to Infer Parameterized Representations of Plants from 3D Scans [2.6774002558989705]
We train a neural network with virtual plants generated using an L-systems-based procedural model.<n>After training, the network allows to infer a parametric tree-like representation based on an input 3D point cloud.<n>We evaluate our approach on Chenopodium Album plants, using experiments on synthetic plants to show that our unified framework allows for different tasks.
arXiv Detail & Related papers (2025-05-28T13:23:48Z) - 3D Can Be Explored In 2D: Pseudo-Label Generation for LiDAR Point Clouds Using Sensor-Intensity-Based 2D Semantic Segmentation [3.192308005611312]
We introduce a new 3D semantic segmentation pipeline that leverages aligned scenes and state-of-the-art 2D segmentation methods.<n>Our approach generates 2D views from LiDAR scans colored by sensor intensity and applies 2D semantic segmentation to these views.<n>The segmented 2D outputs are then back-projected onto the 3D points, with a simple voting-based estimator.
arXiv Detail & Related papers (2025-05-06T08:31:32Z) - ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [11.090775523892074]
We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data.
Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues.
Our method achieves up to 85% of the fully-supervised performance using only 10% labeled data.
arXiv Detail & Related papers (2024-08-21T12:13:18Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
This paper studies the problem of structured lineframe junctions using 3D reconstruction segments andFocusing junctions.
ProjectNEAT enjoys the joint neural fields and view without crossart matching from scratch.
arXiv Detail & Related papers (2023-07-14T07:25:47Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.