A Deep Learning-based in silico Framework for Optimization on Retinal
Prosthetic Stimulation
- URL: http://arxiv.org/abs/2302.03570v1
- Date: Tue, 7 Feb 2023 16:32:05 GMT
- Title: A Deep Learning-based in silico Framework for Optimization on Retinal
Prosthetic Stimulation
- Authors: Yuli Wu, Ivan Karetic, Johannes Stegmaier, Peter Walter, Dorit Merhof
- Abstract summary: We propose a neural network-based framework to optimize the perceptions simulated by the in silico retinal implant model pulse2percept.
The pipeline consists of a trainable encoder, a pre-trained retinal implant model and a pre-trained evaluator.
- Score: 3.870538485112487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a neural network-based framework to optimize the perceptions
simulated by the in silico retinal implant model pulse2percept. The overall
pipeline consists of a trainable encoder, a pre-trained retinal implant model
and a pre-trained evaluator. The encoder is a U-Net, which takes the original
image and outputs the stimulus. The pre-trained retinal implant model is also a
U-Net, which is trained to mimic the biomimetic perceptual model implemented in
pulse2percept. The evaluator is a shallow VGG classifier, which is trained with
original images. Based on 10,000 test images from the MNIST dataset, we show
that the convolutional neural network-based encoder performs significantly
better than the trivial downsampling approach, yielding a boost in the weighted
F1-Score by 36.17% in the pre-trained classifier with 6x10 electrodes. With
this fully neural network-based encoder, the quality of the downstream
perceptions can be fine-tuned using gradient descent in an end-to-end fashion.
Related papers
- Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - Neural Architectural Nonlinear Pre-Processing for mmWave Radar-based
Human Gesture Perception [10.826849062116748]
This paper utilizes two deep learning models, U-Net and EfficientNet, to detect hand gestures and remove noise in a millimeter-wave (mmWave) radar image.
A novel pre-processing approach to denoise images before entering the first deep learning model stage increases the accuracy of classification.
arXiv Detail & Related papers (2022-11-07T12:42:13Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
We propose a new post-processing calibration method called Neural Clamping.
Our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.
arXiv Detail & Related papers (2022-09-23T14:18:39Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Optimization of Residual Convolutional Neural Network for
Electrocardiogram Classification [0.9281671380673306]
We propose to optimize the Recurrent one Dimensional Convolutional Neural Network model (R-1D-CNN) with two levels.
At the first level, a residual convolutional layer and one-dimensional convolutional neural layers are trained to learn patient-specific ECG features.
The second level is automatic and based on proposed algorithm based BO.
arXiv Detail & Related papers (2021-12-11T16:52:23Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.