SwinCross: Cross-modal Swin Transformer for Head-and-Neck Tumor
Segmentation in PET/CT Images
- URL: http://arxiv.org/abs/2302.03861v1
- Date: Wed, 8 Feb 2023 03:36:57 GMT
- Title: SwinCross: Cross-modal Swin Transformer for Head-and-Neck Tumor
Segmentation in PET/CT Images
- Authors: Gary Y. Li, Junyu Chen, Se-In Jang, Kuang Gong, and Quanzheng Li
- Abstract summary: Cross-Modal Swin Transformer (SwinCross) with cross-modal attention (CMA) module incorporated cross-modal feature extraction at multiple resolutions.
The proposed method is experimentally shown to outperform state-of-the-art transformer-based methods.
- Score: 6.936329289469511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiotherapy (RT) combined with cetuximab is the standard treatment for
patients with inoperable head and neck cancers. Segmentation of head and neck
(H&N) tumors is a prerequisite for radiotherapy planning but a time-consuming
process. In recent years, deep convolutional neural networks have become the de
facto standard for automated image segmentation. However, due to the expensive
computational cost associated with enlarging the field of view in DCNNs, their
ability to model long-range dependency is still limited, and this can result in
sub-optimal segmentation performance for objects with background context
spanning over long distances. On the other hand, Transformer models have
demonstrated excellent capabilities in capturing such long-range information in
several semantic segmentation tasks performed on medical images. Inspired by
the recent success of Vision Transformers and advances in multi-modal image
analysis, we propose a novel segmentation model, debuted, Cross-Modal Swin
Transformer (SwinCross), with cross-modal attention (CMA) module to incorporate
cross-modal feature extraction at multiple resolutions.To validate the
effectiveness of the proposed method, we performed experiments on the HECKTOR
2021 challenge dataset and compared it with the nnU-Net (the backbone of the
top-5 methods in HECKTOR 2021) and other state-of-the-art transformer-based
methods such as UNETR, and Swin UNETR. The proposed method is experimentally
shown to outperform these comparing methods thanks to the ability of the CMA
module to capture better inter-modality complimentary feature representations
between PET and CT, for the task of head-and-neck tumor segmentation.
Related papers
- PEMMA: Parameter-Efficient Multi-Modal Adaptation for Medical Image Segmentation [5.056996354878645]
When both CT and PET scans are available, it is common to combine them as two channels of the input to the segmentation model.
This method requires both scan types during training and inference, posing a challenge due to the limited availability of PET scans.
We propose a parameter-efficient multi-modal adaptation framework for lightweight upgrading of a transformer-based segmentation model.
arXiv Detail & Related papers (2024-04-21T16:29:49Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Towards Optimal Patch Size in Vision Transformers for Tumor Segmentation [2.4540404783565433]
Detection of tumors in metastatic colorectal cancer (mCRC) plays an essential role in the early diagnosis and treatment of liver cancer.
Deep learning models backboned by fully convolutional neural networks (FCNNs) have become the dominant model for segmenting 3D computerized tomography (CT) scans.
Vision transformers have been introduced to solve FCNN's locality of receptive fields.
This paper proposes a technique to select the vision transformer's optimal input multi-resolution image patch size based on the average volume size of metastasis lesions.
arXiv Detail & Related papers (2023-08-31T09:57:27Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with
Modality-Correlated Cross-Attention for Brain Tumor Segmentation [37.39921484146194]
Brain tumor segmentation in magnetic resonance image (MRI) is crucial for brain tumor diagnosis, cancer management and research purposes.
With the great success of the ten-year BraTS challenges, a lot of outstanding BTS models have been proposed to tackle the difficulties of BTS in different technical aspects.
We propose a clinical knowledge-driven brain tumor segmentation model, called CKD-TransBTS.
arXiv Detail & Related papers (2022-07-15T09:35:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors
in MRI Images [7.334185314342017]
We propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR)
The model extracts features at five different resolutions by utilizing shifted windows for computing self-attention.
We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase.
arXiv Detail & Related papers (2022-01-04T18:01:34Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.