DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks
- URL: http://arxiv.org/abs/2302.03907v1
- Date: Wed, 8 Feb 2023 06:53:02 GMT
- Title: DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks
- Authors: Jan Kralj, Bla\v{z} \v{S}krlj, \v{Z}iva Ram\v{s}ak, Nada Lavra\v{c},
Kristina Gruden
- Abstract summary: The goal of this work is to explore how the fusion of systems' level information with temporal dynamics of gene expression can be used to predict novel gene functions.
We propose DDeMON, an approach for scalable, systems-level inference of function annotation using time-dependent multiscale biological information.
- Score: 0.7349727826230864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biological systems can be studied at multiple levels of information,
including gene, protein, RNA and different interaction networks levels. The
goal of this work is to explore how the fusion of systems' level information
with temporal dynamics of gene expression can be used in combination with
non-linear approximation power of deep neural networks to predict novel gene
functions in a non-model organism potato \emph{Solanum tuberosum}. We propose
DDeMON (Dynamic Deep learning from temporal Multiplex Ontology-annotated
Networks), an approach for scalable, systems-level inference of function
annotation using time-dependent multiscale biological information. The proposed
method, which is capable of considering billions of potential links between the
genes of interest, was applied on experimental gene expression data and the
background knowledge network to reliably classify genes with unknown function
into five different functional ontology categories, linked to the experimental
data set. Predicted novel functions of genes were validated using extensive
protein domain search approach.
Related papers
- Inference of dynamical gene regulatory networks from single-cell data
with physics informed neural networks [0.0]
We show how physics-informed neural networks (PINNs) can be used to infer the parameters of predictive, dynamical GRNs.
Specifically we study GRNs that exhibit bifurcation behavior and can therefore model cell differentiation.
arXiv Detail & Related papers (2024-01-14T21:43:10Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
We develop a kernel-based neural network model (KNN) that synergizes the strengths of linear mixed models with conventional neural networks.
MINQUE-based test to assess the joint association of genetic variants with the phenotype.
Two additional tests to evaluate and interpret linear and non-linear/non-additive genetic effects.
arXiv Detail & Related papers (2023-12-06T05:02:28Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
We introduce a parallel-layer deep learning network designed exclusively for the identification of gene-gene relationships using gene expression data.
Our model achieved an average AUROC score of 0.834 on the combined BioGRID&DREAM5 dataset, outperforming competing methods in predicting gene-gene interactions.
arXiv Detail & Related papers (2023-10-05T15:45:53Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
We introduce a novel model called Multimodal Similarity Learning Graph Neural Network.
It combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data.
Our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
arXiv Detail & Related papers (2023-09-29T13:33:53Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Complexity-based speciation and genotype representation for
neuroevolution [81.21462458089142]
This paper introduces a speciation principle for neuroevolution where evolving networks are grouped into species based on the number of hidden neurons.
The proposed speciation principle is employed in several techniques designed to promote and preserve diversity within species and in the ecosystem as a whole.
arXiv Detail & Related papers (2020-10-11T06:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.