Predictable MDP Abstraction for Unsupervised Model-Based RL
- URL: http://arxiv.org/abs/2302.03921v2
- Date: Sat, 3 Jun 2023 23:38:06 GMT
- Title: Predictable MDP Abstraction for Unsupervised Model-Based RL
- Authors: Seohong Park, Sergey Levine
- Abstract summary: We propose predictable MDP abstraction (PMA)
Instead of training a predictive model on the original MDP, we train a model on a transformed MDP with a learned action space.
We theoretically analyze PMA and empirically demonstrate that PMA leads to significant improvements over prior unsupervised model-based RL approaches.
- Score: 93.91375268580806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key component of model-based reinforcement learning (RL) is a dynamics
model that predicts the outcomes of actions. Errors in this predictive model
can degrade the performance of model-based controllers, and complex Markov
decision processes (MDPs) can present exceptionally difficult prediction
problems. To mitigate this issue, we propose predictable MDP abstraction (PMA):
instead of training a predictive model on the original MDP, we train a model on
a transformed MDP with a learned action space that only permits predictable,
easy-to-model actions, while covering the original state-action space as much
as possible. As a result, model learning becomes easier and more accurate,
which allows robust, stable model-based planning or model-based RL. This
transformation is learned in an unsupervised manner, before any task is
specified by the user. Downstream tasks can then be solved with model-based
control in a zero-shot fashion, without additional environment interactions. We
theoretically analyze PMA and empirically demonstrate that PMA leads to
significant improvements over prior unsupervised model-based RL approaches in a
range of benchmark environments. Our code and videos are available at
https://seohong.me/projects/pma/
Related papers
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Learning Residual Model of Model Predictive Control via Random Forests
for Autonomous Driving [13.865293598486492]
One major issue in predictive control (MPC) for autonomous driving is the contradiction between the system model's prediction and computation.
This paper reformulates the MPC tracking accuracy as a program (QP) problem optimization as a program (QP) can effectively solve it.
arXiv Detail & Related papers (2023-04-10T03:32:09Z) - Plan To Predict: Learning an Uncertainty-Foreseeing Model for
Model-Based Reinforcement Learning [32.24146877835396]
We propose emphPlan To Predict (P2P), a framework that treats the model rollout process as a sequential decision making problem.
We show that P2P achieves state-of-the-art performance on several challenging benchmark tasks.
arXiv Detail & Related papers (2023-01-20T10:17:22Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Mismatched No More: Joint Model-Policy Optimization for Model-Based RL [172.37829823752364]
We propose a single objective for jointly training the model and the policy, such that updates to either component increases a lower bound on expected return.
Our objective is a global lower bound on expected return, and this bound becomes tight under certain assumptions.
The resulting algorithm (MnM) is conceptually similar to a GAN.
arXiv Detail & Related papers (2021-10-06T13:43:27Z) - Model-based micro-data reinforcement learning: what are the crucial
model properties and which model to choose? [0.2836066255205732]
We contribute to micro-data model-based reinforcement learning (MBRL) by rigorously comparing popular generative models.
We find that on an environment that requires multimodal posterior predictives, mixture density nets outperform all other models by a large margin.
We also found that deterministic models are on par, in fact they consistently (although non-significantly) outperform their probabilistic counterparts.
arXiv Detail & Related papers (2021-07-24T11:38:25Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Bootstrapped model learning and error correction for planning with
uncertainty in model-based RL [1.370633147306388]
A natural aim is to learn a model that reflects accurately the dynamics of the environment.
This paper explores the problem of model misspecification through uncertainty-aware reinforcement learning agents.
We propose a bootstrapped multi-headed neural network that learns the distribution of future states and rewards.
arXiv Detail & Related papers (2020-04-15T15:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.