A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech
- URL: http://arxiv.org/abs/2302.04215v1
- Date: Wed, 8 Feb 2023 17:34:32 GMT
- Title: A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech
- Authors: Li-Wei Chen, Shinji Watanabe, Alexander Rudnicky
- Abstract summary: We train TTS systems using real-world speech from YouTube and podcasts.
Recent Text-to-Speech architecture is designed for multiple code generation and monotonic alignment.
We show thatRecent Text-to-Speech architecture outperforms existing TTS systems in several objective and subjective measures.
- Score: 94.64927912924087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Text-to-Speech (TTS) systems trained on reading or acted corpora have
achieved near human-level naturalness. The diversity of human speech, however,
often goes beyond the coverage of these corpora. We believe the ability to
handle such diversity is crucial for AI systems to achieve human-level
communication. Our work explores the use of more abundant real-world data for
building speech synthesizers. We train TTS systems using real-world speech from
YouTube and podcasts. We observe the mismatch between training and inference
alignments in mel-spectrogram based autoregressive models, leading to
unintelligible synthesis, and demonstrate that learned discrete codes within
multiple code groups effectively resolves this issue. We introduce our MQTTS
system whose architecture is designed for multiple code generation and
monotonic alignment, along with the use of a clean silence prompt to improve
synthesis quality. We conduct ablation analyses to identify the efficacy of our
methods. We show that MQTTS outperforms existing TTS systems in several
objective and subjective measures.
Related papers
- SONAR: A Synthetic AI-Audio Detection Framework and Benchmark [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.
It aims to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.
It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based deepfake detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - On the Problem of Text-To-Speech Model Selection for Synthetic Data Generation in Automatic Speech Recognition [31.58289343561422]
We compare five different TTS decoder architectures in the scope of synthetic data generation to show the impact on CTC-based speech recognition training.
For data generation auto-regressive decoding performs better than non-autoregressive decoding, and propose an approach to quantify TTS generalization capabilities.
arXiv Detail & Related papers (2024-07-31T09:37:27Z) - CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens [49.569695524535454]
We propose to represent speech with supervised semantic tokens, which are derived from a multilingual speech recognition model by inserting vector quantization into the encoder.
Based on the tokens, we further propose a scalable zero-shot TTS synthesizer, CosyVoice, which consists of an LLM for text-to-token generation and a conditional flow matching model for token-to-speech synthesis.
arXiv Detail & Related papers (2024-07-07T15:16:19Z) - Accent Conversion in Text-To-Speech Using Multi-Level VAE and Adversarial Training [14.323313455208183]
Inclusive speech technology aims to erase any biases towards specific groups, such as people of certain accent.
We propose a TTS model that utilizes a Multi-Level Variational Autoencoder with adversarial learning to address accented speech synthesis and conversion.
arXiv Detail & Related papers (2024-06-03T05:56:02Z) - Unified speech and gesture synthesis using flow matching [24.2094371314481]
This paper presents a novel, unified architecture for jointly synthesising speech acoustics and skeleton-based 3D gesture motion from text.
The proposed architecture is simpler than the previous state of the art, has a smaller memory footprint, and can capture the joint distribution of speech and gestures.
arXiv Detail & Related papers (2023-10-08T14:37:28Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z) - Unsupervised TTS Acoustic Modeling for TTS with Conditional Disentangled Sequential VAE [36.50265124324876]
We propose a novel unsupervised text-to-speech acoustic model training scheme, named UTTS, which does not require text-audio pairs.
The framework offers a flexible choice of a speaker's duration model, timbre feature (identity) and content for TTS inference.
Experiments demonstrate that UTTS can synthesize speech of high naturalness and intelligibility measured by human and objective evaluations.
arXiv Detail & Related papers (2022-06-06T11:51:22Z) - Spoken Style Learning with Multi-modal Hierarchical Context Encoding for
Conversational Text-to-Speech Synthesis [59.27994987902646]
The study about learning spoken styles from historical conversations is still in its infancy.
Only the transcripts of the historical conversations are considered, which neglects the spoken styles in historical speeches.
We propose a spoken style learning approach with multi-modal hierarchical context encoding.
arXiv Detail & Related papers (2021-06-11T08:33:52Z) - Synth2Aug: Cross-domain speaker recognition with TTS synthesized speech [8.465993273653554]
We investigate the use of a multi-speaker Text-To-Speech system to synthesize speech in support of speaker recognition.
We observe on our datasets that TTS synthesized speech improves cross-domain speaker recognition performance.
We also explore the effectiveness of different types of text transcripts used for TTS synthesis.
arXiv Detail & Related papers (2020-11-24T00:48:54Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.