Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization
- URL: http://arxiv.org/abs/2302.04552v3
- Date: Sat, 16 Mar 2024 15:36:02 GMT
- Title: Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization
- Authors: Sijia Chen, Yu-Jie Zhang, Wei-Wei Tu, Peng Zhao, Lijun Zhang,
- Abstract summary: We investigate theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model.
For strongly convex and smooth functions, we establish an $mathcalO(sigma_max2 + Sigma_max2) log, better than their $mathcalO(sigma_max2 + Sigma_max2) log T.
We establish the first dynamic regret guarantee for the model with convex and smooth functions, which is more favorable than static regret bounds in non-stationary scenarios
- Score: 40.19608203064051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance $\sigma_{1:T}^2$ and the cumulative adversarial variation $\Sigma_{1:T}^2$ for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance $\sigma_{\max}^2$ and the maximal adversarial variation $\Sigma_{\max}^2$ for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same $\mathcal{O}(\sqrt{\sigma_{1:T}^2}+\sqrt{\Sigma_{1:T}^2})$ regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log (\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound, better than their $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log T)$ result. For exp-concave and smooth functions, we achieve a new $\mathcal{O}(d\log(\sigma_{1:T}^2+\Sigma_{1:T}^2))$ bound. Owing to the OMD framework, we broaden our work to study dynamic regret minimization and scenarios where the online functions are non-smooth. We establish the first dynamic regret guarantee for the SEA model with convex and smooth functions, which is more favorable than static regret bounds in non-stationary scenarios. Furthermore, to deal with non-smooth and convex functions in the SEA model, we propose novel algorithms building on optimistic OMD with an implicit update, which provably attain static regret and dynamic regret guarantees without smoothness conditions.
Related papers
- Near-Optimal Streaming Heavy-Tailed Statistical Estimation with Clipped SGD [16.019880089338383]
We show that Clipped-SGD, for smooth and strongly convex objectives, achieves an error of $sqrtfracmathsfTr(Sigma)+sqrtmathsfTr(Sigma)+sqrtmathsfTr(Sigma)+sqrtmathsfTr(Sigma)+sqrtmathsfTr(Sigma)+sqrtmathsfTr(Sigma)+sqrtmathsf
arXiv Detail & Related papers (2024-10-26T10:14:17Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - The Sample Complexity Of ERMs In Stochastic Convex Optimization [13.896417716930687]
We show that in fact $tildeO(fracdepsilon+frac1epsilon2)$ data points are also sufficient.
We further generalize the result and show that a similar upper bound holds for all convex bodies.
arXiv Detail & Related papers (2023-11-09T14:29:25Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Smoothed Analysis with Adaptive Adversaries [28.940767013349408]
We prove novel algorithmic guarantees for several online problems in the smoothed analysis model.
In this model, at each time an adversary chooses an input distribution with density function bounded above by $tfrac1sigma$ times that of the uniform distribution.
Our results hold for em adaptive adversaries that can choose an input distribution based on the decisions of the algorithm and the realizations of the inputs in the previous time steps.
arXiv Detail & Related papers (2021-02-16T20:54:49Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z) - Tight Regret Bounds for Noisy Optimization of a Brownian Motion [118.65407541895851]
We consider the problem of Bayesian optimization of a one-dimensional Brownian motion in which the $T$ adaptively chosen observations are corrupted by Gaussian noise.
We show that as the smallest possible expected cumulative regret and the smallest possible expected simple regret scale as $Omega(sigmasqrtT cdot log T)$.
arXiv Detail & Related papers (2020-01-25T14:44:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.