High-fidelity Interpretable Inverse Rig: An Accurate and Sparse Solution
Optimizing the Quartic Blendshape Model
- URL: http://arxiv.org/abs/2302.04820v2
- Date: Mon, 27 Mar 2023 09:21:29 GMT
- Title: High-fidelity Interpretable Inverse Rig: An Accurate and Sparse Solution
Optimizing the Quartic Blendshape Model
- Authors: Stevo Rackovi\'c, Cl\'audia Soares, Du\v{s}an Jakoveti\'c, Zoranka
Desnica
- Abstract summary: We propose a method to fit arbitrarily accurate blendshape rig models by solving the inverse rig problem in realistic human face animation.
We show experimentally that the proposed method yields solutions with mesh error comparable to or lower than the state-of-the-art approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a method to fit arbitrarily accurate blendshape rig models by
solving the inverse rig problem in realistic human face animation. The method
considers blendshape models with different levels of added corrections and
solves the regularized least-squares problem using coordinate descent, i.e.,
iteratively estimating blendshape weights. Besides making the optimization
easier to solve, this approach ensures that mutually exclusive controllers will
not be activated simultaneously and improves the goodness of fit after each
iteration. We show experimentally that the proposed method yields solutions
with mesh error comparable to or lower than the state-of-the-art approaches
while significantly reducing the cardinality of the weight vector (over 20
percent), hence giving a high-fidelity reconstruction of the reference
expression that is easier to manipulate in the post-production manually. Python
scripts for the algorithm will be publicly available upon acceptance of the
paper.
Related papers
- Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - A Game of Bundle Adjustment -- Learning Efficient Convergence [11.19540223578237]
We show how to reduce the number of iterations required to reach the bundle adjustment's convergence.
We show that this reduction benefits the classic approach and can be integrated with other bundle adjustment acceleration methods.
arXiv Detail & Related papers (2023-08-25T09:44:45Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Distributed Solution of the Inverse Rig Problem in Blendshape Facial
Animation [0.0]
Rig inversion is central in facial animation as it allows for a realistic and appealing performance of avatars.
A possible approach towards a faster solution is clustering, which exploits the spacial nature of the face.
In this paper, we go a step further, involving cluster coupling to get more confident estimates of the overlapping components.
arXiv Detail & Related papers (2023-03-11T10:34:07Z) - IKOL: Inverse kinematics optimization layer for 3D human pose and shape
estimation via Gauss-Newton differentiation [44.00115413716392]
This paper presents an inverse kinematic layer (IKOL) for 3D human pose shape estimation.
IKOL has a much over over than most existing regression-based methods.
It provides a more accurate range of 3D human pose estimation.
arXiv Detail & Related papers (2023-02-02T12:43:29Z) - Subpixel Heatmap Regression for Facial Landmark Localization [65.41270740933656]
Heatmap regression approaches suffer from discretization-induced errors related to both the heatmap encoding and decoding process.
We propose a new approach for the heatmap encoding and decoding process by leveraging the underlying continuous distribution.
Our approach offers noticeable gains across multiple datasets setting a new state-of-the-art result in facial landmark localization.
arXiv Detail & Related papers (2021-11-03T17:21:28Z) - Accurate, Interpretable, and Fast Animation: AnIterative, Sparse, and
Nonconvex Approach [0.9176056742068814]
A face rig must be accurate and, at the same time, compute fast to solve the problem.
One of the parameters at each common animation model is a sparsity regularization.
In order to reduce the complexity, a paradigm Majorization Mini (MM) is applied.
arXiv Detail & Related papers (2021-09-17T05:42:07Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands.
Our approach combines an extensive list of favorable properties, namely it is marker-less.
We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work.
arXiv Detail & Related papers (2021-06-15T11:39:49Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z) - Weighted Encoding Based Image Interpolation With Nonlocal Linear
Regression Model [8.013127492678272]
In image super-resolution, the low-resolution image is directly down-sampled from its high-resolution counterpart without blurring and noise.
To address this problem, we propose a novel image model based on sparse representation.
New approach to learn adaptive sub-dictionary online instead of clustering.
arXiv Detail & Related papers (2020-03-04T03:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.