Graph Neural Networks Go Forward-Forward
- URL: http://arxiv.org/abs/2302.05282v1
- Date: Fri, 10 Feb 2023 14:45:36 GMT
- Title: Graph Neural Networks Go Forward-Forward
- Authors: Daniele Paliotta, Mathieu Alain, B\'alint M\'at\'e, Fran\c{c}ois
Fleuret
- Abstract summary: We present the Graph Forward-Forward (GFF) algorithm, an extension of the Forward-Forward procedure to graphs.
Our method is to the message-passing scheme, and provides a more biologically plausible learning scheme than backpropagation.
We run experiments on 11 standard graph property prediction tasks, showing how GFF provides an effective alternative to backpropagation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the Graph Forward-Forward (GFF) algorithm, an extension of the
Forward-Forward procedure to graphs, able to handle features distributed over a
graph's nodes. This allows training graph neural networks with forward passes
only, without backpropagation. Our method is agnostic to the message-passing
scheme, and provides a more biologically plausible learning scheme than
backpropagation, while also carrying computational advantages. With GFF, graph
neural networks are trained greedily layer by layer, using both positive and
negative samples. We run experiments on 11 standard graph property prediction
tasks, showing how GFF provides an effective alternative to backpropagation for
training graph neural networks. This shows in particular that this procedure is
remarkably efficient in spite of combining the per-layer training with the
locality of the processing in a GNN.
Related papers
- Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - DiP-GNN: Discriminative Pre-Training of Graph Neural Networks [49.19824331568713]
Graph neural network (GNN) pre-training methods have been proposed to enhance the power of GNNs.
One popular pre-training method is to mask out a proportion of the edges, and a GNN is trained to recover them.
In our framework, the graph seen by the discriminator better matches the original graph because the generator can recover a proportion of the masked edges.
arXiv Detail & Related papers (2022-09-15T17:41:50Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Training Graph Neural Networks by Graphon Estimation [2.5997274006052544]
We propose to train a graph neural network via resampling from a graphon estimate obtained from the underlying network data.
We show that our approach is competitive with and in many cases outperform the other over-smoothing reducing GNN training methods.
arXiv Detail & Related papers (2021-09-04T19:21:48Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
We present a new distributed graph learning system GraphTheta.
It supports multiple training strategies and enables efficient and scalable learning on big graphs.
This work represents the largest edge-attributed GNN learning task conducted on a billion-scale network in the literature.
arXiv Detail & Related papers (2021-04-21T14:51:33Z) - Variational models for signal processing with Graph Neural Networks [3.5939555573102853]
This paper is devoted to signal processing on point-clouds by means of neural networks.
In this work, we investigate the use of variational models for such Graph Neural Networks to process signals on graphs for unsupervised learning.
arXiv Detail & Related papers (2021-03-30T13:31:11Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.