Unsupervised Deep One-Class Classification with Adaptive Threshold based
on Training Dynamics
- URL: http://arxiv.org/abs/2302.06048v1
- Date: Mon, 13 Feb 2023 01:51:34 GMT
- Title: Unsupervised Deep One-Class Classification with Adaptive Threshold based
on Training Dynamics
- Authors: Minkyung Kim, Junsik Kim, Jongmin Yu, Jun Kyun Choi
- Abstract summary: We propose an unsupervised deep one-class classification that learns normality from pseudo-labeled normal samples.
Experiments on 10 anomaly detection benchmarks show that our method effectively improves performance on anomaly detection by sizable margins.
- Score: 11.047949973156836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-class classification has been a prevailing method in building deep
anomaly detection models under the assumption that a dataset consisting of
normal samples is available. In practice, however, abnormal samples are often
mixed in a training dataset, and they detrimentally affect the training of deep
models, which limits their applicability. For robust normality learning of deep
practical models, we propose an unsupervised deep one-class classification that
learns normality from pseudo-labeled normal samples, i.e., outlier detection in
single cluster scenarios. To this end, we propose a pseudo-labeling method by
an adaptive threshold selected by ranking-based training dynamics. The
experiments on 10 anomaly detection benchmarks show that our method effectively
improves performance on anomaly detection by sizable margins.
Related papers
- Adaptive Intra-Class Variation Contrastive Learning for Unsupervised Person Re-Identification [10.180143197144803]
We propose an adaptive intra-class variation contrastive learning algorithm for unsupervised Re-ID, called AdaInCV.
The algorithm quantitatively evaluates the learning ability of the model for each class by considering the intra-class variations after clustering.
To be more specific, two new strategies are proposed: Adaptive Sample Mining (AdaSaM) and Adaptive Outlier Filter (AdaOF)
arXiv Detail & Related papers (2024-04-06T15:48:14Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
We tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method.
First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary.
Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively.
arXiv Detail & Related papers (2023-09-18T03:56:45Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
In a standard anomaly detection problem, a detection model is trained in an unsupervised setting, under an assumption that the samples were generated from a single source of normal data.
In practice, normal data often consist of multiple classes. In such settings, learning to differentiate between normal instances and anomalies among discrepancies between normal classes without large-scale labeled data presents a significant challenge.
In this work, we attempt to overcome this challenge by preparing few examples from each normal class, which is not excessively costly.
arXiv Detail & Related papers (2021-11-25T07:15:12Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.