Provably Safe Reinforcement Learning with Step-wise Violation
Constraints
- URL: http://arxiv.org/abs/2302.06064v3
- Date: Thu, 8 Jun 2023 23:18:42 GMT
- Title: Provably Safe Reinforcement Learning with Step-wise Violation
Constraints
- Authors: Nuoya Xiong, Yihan Du, Longbo Huang
- Abstract summary: We consider stricter step-wise violation constraints and do not assume the existence of safe actions.
We propose a novel algorithm SUCBVI, which guarantees $widetildeO(sqrtST)$ step-wise violation and $widetildeO(sqrtH3SAT)$ regret.
We also study a novel safe reward-free exploration problem with step-wise violation constraints.
- Score: 26.020907891512596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate a novel safe reinforcement learning problem
with step-wise violation constraints. Our problem differs from existing works
in that we consider stricter step-wise violation constraints and do not assume
the existence of safe actions, making our formulation more suitable for
safety-critical applications which need to ensure safety in all decision steps
and may not always possess safe actions, e.g., robot control and autonomous
driving. We propose a novel algorithm SUCBVI, which guarantees
$\widetilde{O}(\sqrt{ST})$ step-wise violation and
$\widetilde{O}(\sqrt{H^3SAT})$ regret. Lower bounds are provided to validate
the optimality in both violation and regret performance with respect to $S$ and
$T$. Moreover, we further study a novel safe reward-free exploration problem
with step-wise violation constraints. For this problem, we design an
$(\varepsilon,\delta)$-PAC algorithm SRF-UCRL, which achieves nearly
state-of-the-art sample complexity
$\widetilde{O}((\frac{S^2AH^2}{\varepsilon}+\frac{H^4SA}{\varepsilon^2})(\log(\frac{1}{\delta})+S))$,
and guarantees $\widetilde{O}(\sqrt{ST})$ violation during the exploration. The
experimental results demonstrate the superiority of our algorithms in safety
performance, and corroborate our theoretical results.
Related papers
- Uncertainty-Aware Reward-Free Exploration with General Function Approximation [69.27868448449755]
In this paper, we propose a reward-free reinforcement learning algorithm called alg.
The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment.
Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
arXiv Detail & Related papers (2024-06-24T01:37:18Z) - Safe Reinforcement Learning with Instantaneous Constraints: The Role of
Aggressive Exploration [20.630973009400574]
We study safe Reinforcement Learning (safe RL) with linear function approximation and under hard instantaneous constraints.
Our proposed algorithm, LSVI-AE, achieves $tildecO(sqrtd3H4K)$ hard constraint violation when the cost function is linear and $cO(Hgamma_K sqrtK)$ hard constraint violation when the cost function belongs to RKHS.
arXiv Detail & Related papers (2023-12-22T06:45:45Z) - A Near-Optimal Algorithm for Safe Reinforcement Learning Under
Instantaneous Hard Constraints [43.895798638743784]
We develop the first near-optimal safe RL algorithm for episodic Markov Decision Processes with unsafe states and actions.
It achieves a regret $tildeO(fracd H3 sqrtdKDelta_c)$ that tightly matches the state-of-the-art regret in the setting.
We also provide a lower bound $tildeOmega(maxdH sqrtK, fracHDelta_c2)$, which indicates that the dependency on $
arXiv Detail & Related papers (2023-02-08T23:42:04Z) - A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian
Process Bandits [118.22458816174144]
We propose a novel robust elimination-type algorithm that runs in epochs, combines exploration with infrequent switching to select a small subset of actions, and plays each action for multiple time instants.
Our algorithm, GP Robust Phased Elimination (RGP-PE), successfully balances robustness to corruptions with exploration and exploitation.
We perform the first empirical study of robustness in the corrupted GP bandit setting, and show that our algorithm is robust against a variety of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T21:19:36Z) - Safe Exploration for Constrained Reinforcement Learning with Provable
Guarantees [2.379828460137829]
We propose a model-based safe RL algorithm that we call the Optimistic-Pessimistic Safe Reinforcement Learning (OPSRL) algorithm.
We show that it achieves an $tildemathcalO(S2sqrtA H7K/ (barC - barC_b)$ cumulative regret without violating the safety constraints during learning.
arXiv Detail & Related papers (2021-12-01T23:21:48Z) - Safe Adaptive Learning-based Control for Constrained Linear Quadratic
Regulators with Regret Guarantees [11.627320138064684]
We study the adaptive control of an unknown linear system with a quadratic cost function subject to safety constraints on both the states and actions.
Our algorithm is implemented on a single trajectory and does not require system restarts.
arXiv Detail & Related papers (2021-10-31T05:52:42Z) - Safe Reinforcement Learning with Linear Function Approximation [48.75026009895308]
We introduce safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold.
We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation.
We show that SLUCB-QVI and RSLUCB-QVI, while with emphno safety violation, achieve a $tildemathcalOleft(kappasqrtd3H3Tright)$ regret, nearly matching
arXiv Detail & Related papers (2021-06-11T08:46:57Z) - Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff
in Regret [115.85354306623368]
We study risk-sensitive reinforcement learning in episodic Markov decision processes with unknown transition kernels.
We propose two provably efficient model-free algorithms, Risk-Sensitive Value Iteration (RSVI) and Risk-Sensitive Q-learning (RSQ)
We prove that RSVI attains an $tildeObig(lambda(|beta| H2) cdot sqrtH3 S2AT big)$ regret, while RSQ attains an $tildeObig(lambda
arXiv Detail & Related papers (2020-06-22T19:28:26Z) - Adaptive Reward-Free Exploration [48.98199700043158]
We show that our reward-free UCRL algorithm can be seen as a variant of an algorithm of Fiechter from 1994.
We further investigate the relative complexities of reward-free exploration and best-policy identification.
arXiv Detail & Related papers (2020-06-11T09:58:03Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.