Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition
- URL: http://arxiv.org/abs/2302.06397v2
- Date: Mon, 16 Oct 2023 12:31:12 GMT
- Title: Type-Aware Decomposed Framework for Few-Shot Named Entity Recognition
- Authors: Yongqi Li, Yu Yu, Tieyun Qian
- Abstract summary: We propose a novel Type-Aware Decomposed framework, namely TadNER, to solve these problems.
We first present a type-aware span filtering strategy to filter out false spans by removing those semantically far away from type names.
We then present a type-aware contrastive learning strategy to construct more accurate and stable prototypes.
- Score: 12.444196348710728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the recent success achieved by several two-stage prototypical
networks in few-shot named entity recognition (NER) task, the overdetected
false spans at the span detection stage and the inaccurate and unstable
prototypes at the type classification stage remain to be challenging problems.
In this paper, we propose a novel Type-Aware Decomposed framework, namely
TadNER, to solve these problems. We first present a type-aware span filtering
strategy to filter out false spans by removing those semantically far away from
type names. We then present a type-aware contrastive learning strategy to
construct more accurate and stable prototypes by jointly exploiting support
samples and type names as references. Extensive experiments on various
benchmarks prove that our proposed TadNER framework yields a new
state-of-the-art performance. Our code and data will be available at
https://github.com/NLPWM-WHU/TadNER.
Related papers
- Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - MProto: Multi-Prototype Network with Denoised Optimal Transport for
Distantly Supervised Named Entity Recognition [75.87566793111066]
We propose a noise-robust prototype network named MProto for the DS-NER task.
MProto represents each entity type with multiple prototypes to characterize the intra-class variance.
To mitigate the noise from incomplete labeling, we propose a novel denoised optimal transport (DOT) algorithm.
arXiv Detail & Related papers (2023-10-12T13:02:34Z) - PromptNER: A Prompting Method for Few-shot Named Entity Recognition via
k Nearest Neighbor Search [56.81939214465558]
We propose PromptNER: a novel prompting method for few-shot NER via k nearest neighbor search.
We use prompts that contains entity category information to construct label prototypes, which enables our model to fine-tune with only the support set.
Our approach achieves excellent transfer learning ability, and extensive experiments on the Few-NERD and CrossNER datasets demonstrate that our model achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-20T15:47:59Z) - A Prototypical Semantic Decoupling Method via Joint Contrastive Learning
for Few-Shot Name Entity Recognition [24.916377682689955]
Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances.
We propose a Prototypical Semantic Decoupling method via joint Contrastive learning (PSDC) for few-shot NER.
Experimental results on two few-shot NER benchmarks demonstrate that PSDC consistently outperforms the previous SOTA methods in terms of overall performance.
arXiv Detail & Related papers (2023-02-27T09:20:00Z) - SpanProto: A Two-stage Span-based Prototypical Network for Few-shot
Named Entity Recognition [45.012327072558975]
Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data.
We propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach.
In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information.
For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities.
arXiv Detail & Related papers (2022-10-17T12:59:33Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
This paper tackles the problem of novel category discovery (NCD), which aims to discriminate unknown categories in large-scale image collections.
We propose a novel adaptive prototype learning method consisting of two main stages: prototypical representation learning and prototypical self-training.
We conduct extensive experiments on four benchmark datasets and demonstrate the effectiveness and robustness of the proposed method with state-of-the-art performance.
arXiv Detail & Related papers (2022-08-01T16:34:33Z) - Decomposed Meta-Learning for Few-Shot Named Entity Recognition [32.515795881027074]
Few-shot named entity recognition (NER) systems aim at recognizing novel-class named entities based on only a few labeled examples.
We present a meta-learning approach which tackles few-shot span detection and few-shot entity typing using meta-learning.
arXiv Detail & Related papers (2022-04-12T12:46:23Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Contrastive Prototype Learning with Augmented Embeddings for Few-Shot
Learning [58.2091760793799]
We propose a novel contrastive prototype learning with augmented embeddings (CPLAE) model.
With a class prototype as an anchor, CPL aims to pull the query samples of the same class closer and those of different classes further away.
Extensive experiments on several benchmarks demonstrate that our proposed CPLAE achieves new state-of-the-art.
arXiv Detail & Related papers (2021-01-23T13:22:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.