Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation
- URL: http://arxiv.org/abs/2302.06616v1
- Date: Mon, 13 Feb 2023 19:00:00 GMT
- Title: Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation
- Authors: Lukas Burgholzer, Alexander Ploier, and Robert Wille
- Abstract summary: tensor networks and decision diagrams have independently been developed with differing perspectives, terminologies, and backgrounds in mind.
We consider how these techniques approach classical quantum circuit simulation, and examine their (dis)similarities with regard to their most applicable abstraction level.
We provide guidelines for when to better use tensor networks and when to better use decision diagrams in classical quantum circuit simulation.
- Score: 65.93830818469833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classically simulating quantum circuits is crucial when developing or testing
quantum algorithms. Due to the underlying exponential complexity, efficient
data structures are key for performing such simulations. To this end, tensor
networks and decision diagrams have independently been developed with differing
perspectives, terminologies, and backgrounds in mind. Although this left
designers with two complementary data structures for quantum circuit
simulation, thus far it remains unclear which one is the better choice for a
given use case. In this work, we (1) consider how these techniques approach
classical quantum circuit simulation, and (2) examine their (dis)similarities
with regard to their most applicable abstraction level, the desired simulation
output, the impact of the computation order, and the ease of distributing the
workload. As a result, we provide guidelines for when to better use tensor
networks and when to better use decision diagrams in classical quantum circuit
simulation.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Simulating Quantum Circuits by Model Counting [0.0]
We show for the first time that a strong simulation of universal quantum circuits can be efficiently tackled through weighted model counting.
Our work paves the way to apply the existing array of powerful classical reasoning tools to realize efficient quantum circuit compilation.
arXiv Detail & Related papers (2024-03-11T22:40:15Z) - A Herculean task: Classical simulation of quantum computers [4.12322586444862]
This work reviews the state-of-the-art numerical simulation methods that emulate quantum computer evolution under specific operations.
We focus on the mainstream state-vector and tensor-network paradigms while briefly mentioning alternative methods.
arXiv Detail & Related papers (2023-02-17T13:59:53Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Classical circuits can simulate quantum aspects [0.0]
This study introduces a method for simulating quantum systems using electrical networks.
By synthesizing interaction networks, we accurately simulate quantum systems of varying complexity, from $2-$state to $n-$state systems.
arXiv Detail & Related papers (2022-09-19T18:42:06Z) - Classically optimized Hamiltonian simulation [0.0]
Hamiltonian simulation is a promising application for quantum computers.
We show that, compared to Trotter product formulas, the classically optimized circuits can be orders of magnitude more accurate.
arXiv Detail & Related papers (2022-05-23T16:14:43Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.