Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical
Synthesis and Performance Analysis on Classic and Deep Learning Algorithms
- URL: http://arxiv.org/abs/2302.07184v2
- Date: Mon, 14 Aug 2023 14:49:27 GMT
- Title: Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical
Synthesis and Performance Analysis on Classic and Deep Learning Algorithms
- Authors: Ningli Xu, Rongjun Qin, Shuang Song
- Abstract summary: We provide a comprehensive review of the state-of-the-art (SOTA) point cloud registration methods.
We analyze and evaluate these methods using a diverse set of point cloud data from indoor to satellite sources.
More than ten methods, including classic hand-crafted, deep-learning-based feature correspondence, and robust C2C methods were tested.
- Score: 7.874736360019618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in computer vision and deep learning have shown promising
performance in estimating rigid/similarity transformation between unregistered
point clouds of complex objects and scenes. However, their performances are
mostly evaluated using a limited number of datasets from a single sensor (e.g.
Kinect or RealSense cameras), lacking a comprehensive overview of their
applicability in photogrammetric 3D mapping scenarios. In this work, we provide
a comprehensive review of the state-of-the-art (SOTA) point cloud registration
methods, where we analyze and evaluate these methods using a diverse set of
point cloud data from indoor to satellite sources. The quantitative analysis
allows for exploring the strengths, applicability, challenges, and future
trends of these methods. In contrast to existing analysis works that introduce
point cloud registration as a holistic process, our experimental analysis is
based on its inherent two-step process to better comprehend these approaches
including feature/keypoint-based initial coarse registration and dense fine
registration through cloud-to-cloud (C2C) optimization. More than ten methods,
including classic hand-crafted, deep-learning-based feature correspondence, and
robust C2C methods were tested. We observed that the success rate of most of
the algorithms are fewer than 40% over the datasets we tested and there are
still are large margin of improvement upon existing algorithms concerning 3D
sparse corresopondence search, and the ability to register point clouds with
complex geometry and occlusions. With the evaluated statistics on three
datasets, we conclude the best-performing methods for each step and provide our
recommendations, and outlook future efforts.
Related papers
- Human as Points: Explicit Point-based 3D Human Reconstruction from
Single-view RGB Images [78.56114271538061]
We introduce an explicit point-based human reconstruction framework called HaP.
Our approach is featured by fully-explicit point cloud estimation, manipulation, generation, and refinement in the 3D geometric space.
Our results may indicate a paradigm rollback to the fully-explicit and geometry-centric algorithm design.
arXiv Detail & Related papers (2023-11-06T05:52:29Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
This paper introduces point cloud acquisition, characteristics, and challenges.
We review 3D data representations, storage formats, and commonly used datasets for point cloud classification.
arXiv Detail & Related papers (2023-11-05T09:28:43Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
This paper presents the first comprehensive survey of label-efficient learning of point clouds.
We propose a taxonomy that organizes label-efficient learning methods based on the data prerequisites provided by different types of labels.
For each approach, we outline the problem setup and provide an extensive literature review that showcases relevant progress and challenges.
arXiv Detail & Related papers (2023-05-31T12:54:51Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
We tackle the task of estimating the 6D pose of an object from point cloud data.
Recent learning-based approaches to addressing this task have shown great success on synthetic datasets.
We analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds.
arXiv Detail & Related papers (2022-03-29T07:55:04Z) - A comprehensive survey on point cloud registration [11.69025325594053]
This survey conducts a comprehensive survey, including both same-source and cross-source registration methods.
Survey builds a new benchmark to evaluate the state-of-the-art registration algorithms in solving cross-source challenges.
arXiv Detail & Related papers (2021-03-03T21:17:06Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3D Point cloud registration is still a very challenging topic due to the difficulty in finding the rigid transformation between two point clouds.
In this paper, we present an end-to-end deep-learning based approach to resolve the point cloud registration problem.
arXiv Detail & Related papers (2020-11-30T06:55:05Z) - PointManifold: Using Manifold Learning for Point Cloud Classification [5.705680763604835]
We propose a point cloud classification method based on graph neural network and manifold learning.
This paper uses manifold learning algorithms to embed point cloud features for better considering continuity on the surface.
Experiments show that the proposed point cloud classification methods obtain the mean class accuracy (mA) of 90.2% and the overall accuracy (oA) of 93.2%.
arXiv Detail & Related papers (2020-10-14T16:28:19Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - Point Set Voting for Partial Point Cloud Analysis [26.31029112502835]
techniques for point cloud classification and segmentation have in recent years achieved incredible performance driven in part by leveraging large synthetic datasets.
This paper proposes a general model for partial point clouds analysis wherein the latent feature encoding a complete point clouds is inferred by applying a local point set voting strategy.
arXiv Detail & Related papers (2020-07-09T03:37:31Z) - Learning multiview 3D point cloud registration [74.39499501822682]
We present a novel, end-to-end learnable, multiview 3D point cloud registration algorithm.
Our approach outperforms the state-of-the-art by a significant margin, while being end-to-end trainable and computationally less costly.
arXiv Detail & Related papers (2020-01-15T03:42:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.