FedLE: Federated Learning Client Selection with Lifespan Extension for
Edge IoT Networks
- URL: http://arxiv.org/abs/2302.07305v1
- Date: Tue, 14 Feb 2023 19:41:24 GMT
- Title: FedLE: Federated Learning Client Selection with Lifespan Extension for
Edge IoT Networks
- Authors: Jiajun Wu, Steve Drew, Jiayu Zhou
- Abstract summary: Federated learning (FL) is a distributed and privacy-preserving learning framework for predictive modeling with massive data generated at the edge by Internet of Things (IoT) devices.
One major challenge preventing the wide adoption of FL in IoT is the pervasive power supply constraints of IoT devices.
We propose FedLE, an energy-efficient client selection framework that enables extension of edge IoT networks.
- Score: 34.63384007690422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is a distributed and privacy-preserving learning
framework for predictive modeling with massive data generated at the edge by
Internet of Things (IoT) devices. One major challenge preventing the wide
adoption of FL in IoT is the pervasive power supply constraints of IoT devices
due to the intensive energy consumption of battery-powered clients for local
training and model updates. Low battery levels of clients eventually lead to
their early dropouts from edge networks, loss of training data jeopardizing the
performance of FL, and their availability to perform other designated tasks. In
this paper, we propose FedLE, an energy-efficient client selection framework
that enables lifespan extension of edge IoT networks. In FedLE, the clients
first run for a minimum epoch to generate their local model update. The models
are partially uploaded to the server for calculating similarities between each
pair of clients. Clustering is performed against these client pairs to identify
those with similar model distributions. In each round, low-powered clients have
a lower probability of being selected, delaying the draining of their
batteries. Empirical studies show that FedLE outperforms baselines on benchmark
datasets and lasts more training rounds than FedAvg with battery power
constraints.
Related papers
- FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
Federated Learning (FL) achieves great popularity in the Internet of Things (IoT)
We present FLrce, an efficient FL framework with a relationship-based client selection and early-stopping strategy.
Experiment results show that, compared with existing efficient FL frameworks, FLrce improves the computation and communication efficiency by at least 30% and 43% respectively.
arXiv Detail & Related papers (2023-10-15T10:13:44Z) - DynamicFL: Balancing Communication Dynamics and Client Manipulation for
Federated Learning [6.9138560535971605]
Federated Learning (FL) aims to train a global model by exploiting the decentralized data across millions of edge devices.
Given the geo-distributed edge devices with highly dynamic networks in the wild, aggregating all the model updates from those participating devices will result in inevitable long-tail delays in FL.
We propose a novel FL framework, DynamicFL, by considering the communication dynamics and data quality across massive edge devices with a specially designed client manipulation strategy.
arXiv Detail & Related papers (2023-07-16T19:09:31Z) - FLEdge: Benchmarking Federated Machine Learning Applications in Edge Computing Systems [61.335229621081346]
Federated Learning (FL) has become a viable technique for realizing privacy-enhancing distributed deep learning on the network edge.
In this paper, we propose FLEdge, which complements existing FL benchmarks by enabling a systematic evaluation of client capabilities.
arXiv Detail & Related papers (2023-06-08T13:11:20Z) - Knowledge-Enhanced Semi-Supervised Federated Learning for Aggregating
Heterogeneous Lightweight Clients in IoT [34.128674870180596]
Federated learning (FL) enables multiple clients to train models collaboratively without sharing local data.
We propose pFedKnow, which generates lightweight personalized client models via neural network pruning techniques to reduce communication cost.
Experiment results on both image and text datasets show that the proposed pFedKnow outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2023-03-05T13:19:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Aergia: Leveraging Heterogeneity in Federated Learning Systems [5.0650178943079]
Federated Learning (FL) relies on clients to update a global model using their local datasets.
Aergia is a novel approach where slow clients freeze the part of their model that is the most computationally intensive to train.
Aergia significantly reduces the training time under heterogeneous settings by up to 27% and 53% compared to FedAvg and TiFL, respectively.
arXiv Detail & Related papers (2022-10-12T12:59:18Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z) - FedAR: Activity and Resource-Aware Federated Learning Model for
Distributed Mobile Robots [1.332560004325655]
A recently proposed Machine Learning algorithm called Federated Learning (FL) paves the path towards preserving data privacy.
This paper proposes an FL model by monitoring client activities and leveraging available local computing resources.
We consider such mobile robots as FL clients to understand their resource-constrained behavior in a real-world setting.
arXiv Detail & Related papers (2021-01-11T05:27:37Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.