On graph-based reentrancy-free semantic parsing
- URL: http://arxiv.org/abs/2302.07679v1
- Date: Wed, 15 Feb 2023 14:14:09 GMT
- Title: On graph-based reentrancy-free semantic parsing
- Authors: Alban Petit, Caio Corro
- Abstract summary: We propose a graph-based approach for semantic parsing that resolves two problems observed in the literature.
We prove that both MAP inference and latent tag anchoring (required for weakly-supervised learning) are NP-hard problems.
We propose two optimization algorithms based on constraint smoothing and conditional gradient to approximately solve these inference problems.
- Score: 5.228711636020665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel graph-based approach for semantic parsing that resolves
two problems observed in the literature: (1) seq2seq models fail on
compositional generalization tasks; (2) previous work using phrase structure
parsers cannot cover all the semantic parses observed in treebanks. We prove
that both MAP inference and latent tag anchoring (required for
weakly-supervised learning) are NP-hard problems. We propose two optimization
algorithms based on constraint smoothing and conditional gradient to
approximately solve these inference problems. Experimentally, our approach
delivers state-of-the-art results on Geoquery, Scan and Clevr, both for i.i.d.
splits and for splits that test for compositional generalization.
Related papers
- Revisiting Structured Sentiment Analysis as Latent Dependency Graph Parsing [38.27437431585664]
Internal structures of spans are neglected, thus only the boundary tokens of spans are used for relation prediction and span recognition.
Long spans occupy a significant proportion in the SSA datasets, which further exacerbates the problem of internal structure neglect.
We propose a two-stage parsing method and leverage TreeCRFs with a novel constrained inside algorithm to model latent structures explicitly.
arXiv Detail & Related papers (2024-07-05T18:18:50Z) - On Single-Objective Sub-Graph-Based Mutation for Solving the
Bi-Objective Minimum Spanning Tree Problem [0.0]
We contribute to the efficient approximation of the $mathcalNP$-hard multi-objective minimum spanning tree problem (moMST) adopting evolutionary computation.
We design several highly biased sub-graph-based mutation operators founded on the gained insights.
Our results confirm that the sub-graph based operators beat baseline algorithms from the literature.
arXiv Detail & Related papers (2023-05-31T22:35:17Z) - Compositional Generalization without Trees using Multiset Tagging and
Latent Permutations [121.37328648951993]
We phrase semantic parsing as a two-step process: we first tag each input token with a multiset of output tokens.
Then we arrange the tokens into an output sequence using a new way of parameterizing and predicting permutations.
Our model outperforms pretrained seq2seq models and prior work on realistic semantic parsing tasks.
arXiv Detail & Related papers (2023-05-26T14:09:35Z) - Hierarchical Phrase-based Sequence-to-Sequence Learning [94.10257313923478]
We describe a neural transducer that maintains the flexibility of standard sequence-to-sequence (seq2seq) models while incorporating hierarchical phrases as a source of inductive bias during training and as explicit constraints during inference.
Our approach trains two models: a discriminative derivation based on a bracketing grammar whose tree hierarchically aligns source and target phrases, and a neural seq2seq model that learns to translate the aligned phrases one-by-one.
arXiv Detail & Related papers (2022-11-15T05:22:40Z) - Learning Heuristics for the Maximum Clique Enumeration Problem Using Low
Dimensional Representations [0.0]
We use a learning framework for a pruning process of the input graph towards reducing the clique of the maximum enumeration problem.
We study the role of using different vertex representations on the performance of this runtime method.
We observe that using local graph features in the classification process produce more accurate results when combined with a feature elimination process.
arXiv Detail & Related papers (2022-10-30T22:04:32Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Deep Probabilistic Graph Matching [72.6690550634166]
We propose a deep learning-based graph matching framework that works for the original QAP without compromising on the matching constraints.
The proposed method is evaluated on three popularly tested benchmarks (Pascal VOC, Willow Object and SPair-71k) and it outperforms all previous state-of-the-arts on all benchmarks.
arXiv Detail & Related papers (2022-01-05T13:37:27Z) - Grounded Graph Decoding Improves Compositional Generalization in
Question Answering [68.72605660152101]
Question answering models struggle to generalize to novel compositions of training patterns, such as longer sequences or more complex test structures.
We propose Grounded Graph Decoding, a method to improve compositional generalization of language representations by grounding structured predictions with an attention mechanism.
Our model significantly outperforms state-of-the-art baselines on the Compositional Freebase Questions (CFQ) dataset, a challenging benchmark for compositional generalization in question answering.
arXiv Detail & Related papers (2021-11-05T17:50:14Z) - LAGr: Labeling Aligned Graphs for Improving Systematic Generalization in
Semantic Parsing [6.846638912020957]
We show that better systematic generalization can be achieved by producing the meaning representation directly as a graph and not as a sequence.
We propose LAGr, the Labeling Aligned Graphs algorithm that produces semantic parses by predicting node and edge labels for a complete multi-layer input-aligned graph.
arXiv Detail & Related papers (2021-10-14T17:37:04Z) - Pseudo-Convolutional Policy Gradient for Sequence-to-Sequence
Lip-Reading [96.48553941812366]
Lip-reading aims to infer the speech content from the lip movement sequence.
Traditional learning process of seq2seq models suffers from two problems.
We propose a novel pseudo-convolutional policy gradient (PCPG) based method to address these two problems.
arXiv Detail & Related papers (2020-03-09T09:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.