Knowledge Enhanced Semantic Communication Receiver
- URL: http://arxiv.org/abs/2302.07727v2
- Date: Sat, 15 Apr 2023 10:25:24 GMT
- Title: Knowledge Enhanced Semantic Communication Receiver
- Authors: Bingyan Wang, Rongpeng Li, Jianhang Zhu, Zhifeng Zhao, and Honggang
Zhang
- Abstract summary: We propose a knowledge enhanced semantic communication framework in which the receiver can more actively utilize the facts in the knowledge base for semantic reasoning and decoding.
Specifically, we design a transformer-based knowledge extractor to find relevant factual triples for the received noisy signal.
Extensive simulation results on the WebNLG dataset demonstrate that the proposed receiver yields superior performance on top of the knowledge graph enhanced decoding.
- Score: 7.171974845607281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, with the rapid development of deep learning and natural
language processing technologies, semantic communication has become a topic of
great interest in the field of communication. Although existing deep
learning-based semantic communication approaches have shown many advantages,
they still do not make sufficient use of prior knowledge. Moreover, most
existing semantic communication methods focus on the semantic encoding at the
transmitter side, while we believe that the semantic decoding capability of the
receiver should also be concerned. In this paper, we propose a knowledge
enhanced semantic communication framework in which the receiver can more
actively utilize the facts in the knowledge base for semantic reasoning and
decoding, on the basis of only affecting the parameters rather than the
structure of the neural networks at the transmitter side. Specifically, we
design a transformer-based knowledge extractor to find relevant factual triples
for the received noisy signal. Extensive simulation results on the WebNLG
dataset demonstrate that the proposed receiver yields superior performance on
top of the knowledge graph enhanced decoding.
Related papers
- Generative Semantic Communication for Text-to-Speech Synthesis [39.8799066368712]
This paper develops a novel generative semantic communication framework for text-to-speech synthesis.
We employ a transformer encoder and a diffusion model to achieve efficient semantic coding without introducing significant communication overhead.
arXiv Detail & Related papers (2024-10-04T14:18:31Z) - Rate-Distortion-Perception Theory for Semantic Communication [73.04341519955223]
We study the achievable data rate of semantic communication under the symbol distortion and semantic perception constraints.
We observe that there exists cases that the receiver can directly infer the semantic information source satisfying certain distortion and perception constraints.
arXiv Detail & Related papers (2023-12-09T02:04:32Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
We present the first rigorous vision of a scalable end-to-end semantic communication network.
We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones.
By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice.
arXiv Detail & Related papers (2022-11-25T19:03:25Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
We study semantic communication from a topological space perspective.
A transmitter first maps its data into a $k$-order simplicial complex and then learns its high-order correlations.
The receiver decodes the structure and infers the missing or distorted data.
arXiv Detail & Related papers (2022-10-30T22:33:44Z) - Communication Beyond Transmitting Bits: Semantics-Guided Source and
Channel Coding [7.080957878208516]
"Semantic communications" offers promising research direction.
Injecting semantic guidance into the coded transmission design to achieve semantics-aware communications shows great potential for breakthrough in effectiveness and reliability.
This article sheds light on semantics-guided source and channel coding as a transmission paradigm of semantic communications.
arXiv Detail & Related papers (2022-08-04T06:12:55Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Learning Semantics: An Opportunity for Effective 6G Communications [8.262718096663077]
semantic communications are envisioned as a key enabler of future 6G networks.
This work explores the opportunity offered by semantic communications for beyond 5G networks.
We present and detail a novel architecture that enables representation learning of semantic symbols for effective semantic communications.
arXiv Detail & Related papers (2021-10-14T08:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.