Phase transition in Stabilizer Entropy and efficient purity estimation
- URL: http://arxiv.org/abs/2302.07895v3
- Date: Mon, 4 Mar 2024 20:53:17 GMT
- Title: Phase transition in Stabilizer Entropy and efficient purity estimation
- Authors: Lorenzo Leone, Salvatore F. E. Oliviero, Gianluca Esposito, Alioscia
Hamma
- Abstract summary: We show that Stabilizer Entropy (SE) quantifies the spread of a state in the basis of Pauli operators.
We show that there is a phase transition in the residual subsystem SE as a function of the density of non-Clifford resources.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stabilizer Entropy (SE) quantifies the spread of a state in the basis of
Pauli operators. It is a computationally tractable measure of
non-stabilizerness and thus a useful resource for quantum computation. SE can
be moved around a quantum system, effectively purifying a subsystem from its
complex features. We show that there is a phase transition in the residual
subsystem SE as a function of the density of non-Clifford resources. This phase
transition has important operational consequences: it marks the onset of a
subsystem purity estimation protocol that requires $poly(n)exp(t)$ many queries
to a circuit containing $t$ non-Clifford gates that prepares the state from a
stabilizer state. Then, for $t=O(\log_2 n)$, it estimates the purity with
polynomial resources and, for highly entangled states, attains an exponential
speed-up over the known state-of-the-art algorithms.
Related papers
- An Algorithm for Estimating $α$-Stabilizer Rényi Entropies via Purity [0.0]
We introduce an alternative algorithm for measuring the Stabilizer R'enyi Entropies of an unknown quantum state.<n>We show the existence of a state, produced from the action of a channel on $alpha$ copies of some pure state, that encodes the $alpha$-Stabilizer R'enyi Entropy into its purity.<n>A non-stabilizerness/entanglement relationship is shown to exist in the algorithm, demonstrating a novel relationship between the two resources.
arXiv Detail & Related papers (2025-07-03T11:34:46Z) - Quantum Fidelity Estimation in the Resource Theory of Nonstabilizerness [11.386506926570442]
fidelity estimation is essential for benchmarking quantum states and processes on noisy quantum devices.<n>We propose several efficient protocols for both quantum states and channels within the resource theory of nonstabilizerness.
arXiv Detail & Related papers (2025-06-15T18:51:09Z) - General detectability measure [53.64687146666141]
Distinguishing resource states from resource-free states is a fundamental task in quantum information.
We derived the optimal exponential decay rate of the failure probability for detecting a given $n$-tensor product state.
arXiv Detail & Related papers (2025-01-16T05:39:22Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Probing quantum complexity via universal saturation of stabilizer entropies [0.0]
Nonstabilizerness or magic' is a key resource for quantum computing.
We show that stabilizer R'enyi entropies (SREs) saturate their maximum value at a critical number of non-Clifford operations.
arXiv Detail & Related papers (2024-06-06T15:46:35Z) - Sufficient condition for universal quantum computation using bosonic
circuits [44.99833362998488]
We focus on promoting circuits that are otherwise simulatable to computational universality.
We first introduce a general framework for mapping a continuous-variable state into a qubit state.
We then cast existing maps into this framework, including the modular and stabilizer subsystem decompositions.
arXiv Detail & Related papers (2023-09-14T16:15:14Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quantifying nonstabilizerness of matrix product states [0.0]
We show that nonstabilizerness, as quantified by the recently introduced Stabilizer R'enyi Entropies (SREs), can be computed efficiently for matrix product states (MPSs)
We exploit this observation to revisit the study of ground-state nonstabilizerness in the quantum Ising chain, providing accurate numerical results up to large system sizes.
arXiv Detail & Related papers (2022-07-26T17:50:32Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Magic-state resource theory for the ground state of the transverse-field
Ising model [0.0]
We study the behavior of the stabilizer R'enyi entropy in the integrable transverse field Ising spin chain.
We show that the locality of interactions results in a localized stabilizer R'enyi entropy in the gapped phase.
arXiv Detail & Related papers (2022-05-04T18:00:03Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits.
QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$bits in a specific measurement set-up is presented.
arXiv Detail & Related papers (2021-11-08T09:43:12Z) - Improved Graph Formalism for Quantum Circuit Simulation [77.34726150561087]
We show how to efficiently simplify stabilizer states to canonical form.
We characterize all linearly dependent triplets, revealing symmetries in the inner products.
Using our novel controlled-Pauli $Z$ algorithm, we improve runtime for inner product computation from $O(n3)$ to $O(nd2)$ where $d$ is the maximum degree of the graph.
arXiv Detail & Related papers (2021-09-20T05:56:25Z) - Statistical Approach to Quantum Phase Estimation [62.92678804023415]
We introduce a new statistical and variational approach to the phase estimation algorithm (PEA)
Unlike the traditional and iterative PEAs which return only an eigenphase estimate, the proposed method can determine any unknown eigenstate-eigenphase pair.
We show the simulation results of the method with the Qiskit package on the IBM Q platform and on a local computer.
arXiv Detail & Related papers (2021-04-21T00:02:00Z) - Stabilizer extent is not multiplicative [1.491109220586182]
Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer.
An important open problem is to decide whether the extent is multiplicative under tensor products.
arXiv Detail & Related papers (2020-07-08T18:41:59Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.