Piecewise Deterministic Markov Processes for Bayesian Neural Networks
- URL: http://arxiv.org/abs/2302.08724v2
- Date: Thu, 19 Oct 2023 12:25:26 GMT
- Title: Piecewise Deterministic Markov Processes for Bayesian Neural Networks
- Authors: Ethan Goan, Dimitri Perrin, Kerrie Mengersen, Clinton Fookes
- Abstract summary: Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior.
New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from.
This work introduces a new generic and adaptive thinning scheme for sampling from IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs.
- Score: 20.865775626533434
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Inference on modern Bayesian Neural Networks (BNNs) often relies on a
variational inference treatment, imposing violated assumptions of independence
and the form of the posterior. Traditional MCMC approaches avoid these
assumptions at the cost of increased computation due to its incompatibility to
subsampling of the likelihood. New Piecewise Deterministic Markov Process
(PDMP) samplers permit subsampling, though introduce a model specific
inhomogenous Poisson Process (IPPs) which is difficult to sample from. This
work introduces a new generic and adaptive thinning scheme for sampling from
these IPPs, and demonstrates how this approach can accelerate the application
of PDMPs for inference in BNNs. Experimentation illustrates how inference with
these methods is computationally feasible, can improve predictive accuracy,
MCMC mixing performance, and provide informative uncertainty measurements when
compared against other approximate inference schemes.
Related papers
- A Compact Representation for Bayesian Neural Networks By Removing
Permutation Symmetry [22.229664343428055]
We show that the role of permutations can be meaningfully quantified by a number of transpositions metric.
We then show that the recently proposed rebasin method allows us to summarize HMC samples into a compact representation.
We show that this compact representation allows us to compare trained BNNs directly in weight space across sampling methods and variational inference.
arXiv Detail & Related papers (2023-12-31T23:57:05Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Diffusion models for probabilistic programming [56.47577824219207]
Diffusion Model Variational Inference (DMVI) is a novel method for automated approximate inference in probabilistic programming languages (PPLs)
DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model.
arXiv Detail & Related papers (2023-11-01T12:17:05Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Meta-Uncertainty in Bayesian Model Comparison [0.0]
We propose a fully probabilistic framework for quantifying meta-uncertainty.
We demonstrate the utility of the proposed method in the context of conjugate Bayesian regression, likelihood-based inference with Markov chain Monte Carlo, and simulation-based inference with neural networks.
arXiv Detail & Related papers (2022-10-13T18:10:29Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Surrogate Likelihoods for Variational Annealed Importance Sampling [11.144915453864854]
We introduce a surrogate likelihood that can be learned jointly with other variational parameters.
We show that our method performs well in practice and that it is well-suited for black-box inference in probabilistic programming frameworks.
arXiv Detail & Related papers (2021-12-22T19:49:45Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.