Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks
- URL: http://arxiv.org/abs/2302.08796v2
- Date: Mon, 20 Feb 2023 18:15:29 GMT
- Title: Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks
- Authors: Shuai Han, Lukas Stelz, Horst Stoecker, Lingxiao Wang, Kai Zhou
- Abstract summary: A physics-informed neural network (PINN) embedded with the susceptible-infected-removed (SIR) model is devised to understand the temporal evolution dynamics of infectious diseases.
The method is applied to COVID-19 data reported for Germany and shows that it can accurately identify and predict virus spread trends.
- Score: 23.95944607153291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A physics-informed neural network (PINN) embedded with the
susceptible-infected-removed (SIR) model is devised to understand the temporal
evolution dynamics of infectious diseases. Firstly, the effectiveness of this
approach is demonstrated on synthetic data as generated from the numerical
solution of the susceptible-asymptomatic-infected-recovered-dead (SAIRD) model.
Then, the method is applied to COVID-19 data reported for Germany and shows
that it can accurately identify and predict virus spread trends. The results
indicate that an incomplete physics-informed model can approach more
complicated dynamics efficiently. Thus, the present work demonstrates the high
potential of using machine learning methods, e.g., PINNs, to study and predict
epidemic dynamics in combination with compartmental models.
Related papers
- MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Simulation and application of COVID-19 compartment model using
physic-informed neural network [0.0]
We implement the Physic-Informed Neural Network on both simulation and real-world data.
Results include the spread and forecasting analysis of COVID-19 learned from the neural network.
arXiv Detail & Related papers (2022-08-04T03:59:37Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Modelling COVID-19 Pandemic Dynamics Using Transparent, Interpretable,
Parsimonious and Simulatable (TIPS) Machine Learning Models: A Case Study
from Systems Thinking and System Identification Perspectives [1.4061680807550718]
The present study proposes using systems engineering and system identification approach to build transparent, interpretable, parsimonious and simulatable (TIPS) dynamic machine learning models.
TIPS models are developed based on the well-known NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) model, which can help better understand the COVID-19 pandemic dynamics.
arXiv Detail & Related papers (2021-11-01T08:42:37Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Semi-supervised Neural Networks solve an inverse problem for modeling
Covid-19 spread [61.9008166652035]
We study the spread of COVID-19 using a semi-supervised neural network.
We assume a passive part of the population remains isolated from the virus dynamics.
arXiv Detail & Related papers (2020-10-10T19:33:53Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.