Swapped goal-conditioned offline reinforcement learning
- URL: http://arxiv.org/abs/2302.08865v1
- Date: Fri, 17 Feb 2023 13:22:40 GMT
- Title: Swapped goal-conditioned offline reinforcement learning
- Authors: Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, Joni-Kristen
K\"am\"ar\"ainen
- Abstract summary: We present a general offline reinforcement learning method called deterministic Q-advantage policy gradient (DQAPG)
In the experiments, DQAPG outperforms state-of-the-art goal-conditioned offline RL methods in a wide range of benchmark tasks.
- Score: 8.284193221280216
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Offline goal-conditioned reinforcement learning (GCRL) can be challenging due
to overfitting to the given dataset. To generalize agents' skills outside the
given dataset, we propose a goal-swapping procedure that generates additional
trajectories. To alleviate the problem of noise and extrapolation errors, we
present a general offline reinforcement learning method called deterministic
Q-advantage policy gradient (DQAPG). In the experiments, DQAPG outperforms
state-of-the-art goal-conditioned offline RL methods in a wide range of
benchmark tasks, and goal-swapping further improves the test results. It is
noteworthy, that the proposed method obtains good performance on the
challenging dexterous in-hand manipulation tasks for which the prior methods
failed.
Related papers
- CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
Distribution shift is a major obstacle in offline reinforcement learning.
Previous conservative offline RL algorithms struggle to generalize to unseen actions.
We propose to use the gradient fields of the dataset density generated from a pre-trained offline RL algorithm to adjust the original actions.
arXiv Detail & Related papers (2024-06-11T17:59:29Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Offline Goal-Conditioned Reinforcement Learning for Safety-Critical
Tasks with Recovery Policy [4.854443247023496]
offline goal-conditioned reinforcement learning (GCRL) aims at solving goal-reaching tasks with sparse rewards from an offline dataset.
We propose a new method called Recovery-based Supervised Learning (RbSL) to accomplish safety-critical tasks with various goals.
arXiv Detail & Related papers (2024-03-04T05:20:57Z) - Stitching Sub-Trajectories with Conditional Diffusion Model for
Goal-Conditioned Offline RL [18.31263353823447]
We propose a model-based offline Goal-Conditioned Reinforcement Learning (Offline GCRL) method to acquire diverse goal-oriented skills.
In this paper, we use the diffusion model that generates future plans conditioned on the target goal and value, with the target value estimated from the goal-relabeled offline dataset.
We report state-of-the-art performance in the standard benchmark set of GCRL tasks, and demonstrate the capability to successfully stitch the segments of suboptimal trajectories in the offline data to generate high-quality plans.
arXiv Detail & Related papers (2024-02-11T15:23:13Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Offline Reinforcement Learning with On-Policy Q-Function Regularization [57.09073809901382]
We deal with the (potentially catastrophic) extrapolation error induced by the distribution shift between the history dataset and the desired policy.
We propose two algorithms taking advantage of the estimated Q-function through regularizations, and demonstrate they exhibit strong performance on the D4RL benchmarks.
arXiv Detail & Related papers (2023-07-25T21:38:08Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z) - A Transferable and Automatic Tuning of Deep Reinforcement Learning for
Cost Effective Phishing Detection [21.481974148873807]
Many challenging real-world problems require the deployment of ensembles multiple complementary learning models.
Deep Reinforcement Learning (DRL) offers a cost-effective alternative, where detectors are dynamically chosen based on the output of their predecessors.
arXiv Detail & Related papers (2022-09-19T14:09:07Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Uncertainty-Based Offline Reinforcement Learning with Diversified
Q-Ensemble [16.92791301062903]
We propose an uncertainty-based offline RL method that takes into account the confidence of the Q-value prediction and does not require any estimation or sampling of the data distribution.
Surprisingly, we find that it is possible to substantially outperform existing offline RL methods on various tasks by simply increasing the number of Q-networks along with the clipped Q-learning.
arXiv Detail & Related papers (2021-10-04T16:40:13Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.