The Effect of Information Type on Human Cognitive Augmentation
- URL: http://arxiv.org/abs/2302.09069v1
- Date: Wed, 15 Feb 2023 20:38:47 GMT
- Title: The Effect of Information Type on Human Cognitive Augmentation
- Authors: Ron Fulbright, Samuel McGaha
- Abstract summary: This paper shows the degree of cognitive augmentation depends on the nature of the information the cog contributes to the ensemble.
Results of an experiment are reported showing conceptual information is the most effective type of information resulting in increases in cognitive accuracy, cognitive precision, and cognitive power.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When performing a task alone, humans achieve a certain level of performance.
When humans are assisted by a tool or automation to perform the same task,
performance is enhanced (augmented). Recently developed cognitive systems are
able to perform cognitive processing at or above the level of a human in some
domains. When humans work collaboratively with such cogs in a human/cog
ensemble, we expect augmentation of cognitive processing to be evident and
measurable. This paper shows the degree of cognitive augmentation depends on
the nature of the information the cog contributes to the ensemble. Results of
an experiment are reported showing conceptual information is the most effective
type of information resulting in increases in cognitive accuracy, cognitive
precision, and cognitive power.
Related papers
- Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data [0.0]
Pupil size is a valuable indicator of cognitive workload, reflecting changes in attention and arousal governed by the autonomic nervous system.
This study explores the potential of using machine learning to automatically detect cognitive events experienced using individuals.
arXiv Detail & Related papers (2024-10-18T04:54:46Z) - Metacognitive Monitoring: A Human Ability Beyond Generative Artificial Intelligence [0.0]
Large language models (LLMs) have shown impressive alignment with human cognitive processes.
This study investigates whether ChatGPT possess metacognitive monitoring abilities akin to humans.
arXiv Detail & Related papers (2024-10-17T09:42:30Z) - On the Augmentation of Cognitive Accuracy and Cognitive Precision in
Human/Cog Ensembles [0.0]
Two studies designed to measure the effect information supplied by a cog has on cognitive accuracy, the ability to produce the correct result, and cognitive precision.
Both cognitive accuracy and cognitive precision are shown to be increased by information of different types.
arXiv Detail & Related papers (2023-08-16T15:36:50Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
This work contributes with an artificial intelligent agent able to assist on cognitive science studies.
The developed artificial agent system (SensAI+Expanse) includes machine learning algorithms, empathetic algorithms, and memory.
Results of the present study show evidence of significant emotional behaviour differences between some age ranges and gender combinations.
arXiv Detail & Related papers (2020-01-03T18:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.