An evaluation of deep learning models for predicting water depth
evolution in urban floods
- URL: http://arxiv.org/abs/2302.10062v1
- Date: Mon, 20 Feb 2023 16:08:54 GMT
- Title: An evaluation of deep learning models for predicting water depth
evolution in urban floods
- Authors: Stefania Russo, Nathana\"el Perraudin, Steven Stalder, Fernando
Perez-Cruz, Joao Paulo Leitao, Guillaume Obozinski, Jan Dirk Wegner
- Abstract summary: We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
- Score: 59.31940764426359
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this technical report we compare different deep learning models for
prediction of water depth rasters at high spatial resolution. Efficient,
accurate, and fast methods for water depth prediction are nowadays important as
urban floods are increasing due to higher rainfall intensity caused by climate
change, expansion of cities and changes in land use. While hydrodynamic models
models can provide reliable forecasts by simulating water depth at every
location of a catchment, they also have a high computational burden which
jeopardizes their application to real-time prediction in large urban areas at
high spatial resolution. Here, we propose to address this issue by using
data-driven techniques. Specifically, we evaluate deep learning models which
are trained to reproduce the data simulated by the CADDIES cellular-automata
flood model, providing flood forecasts that can occur at different future time
horizons. The advantage of using such models is that they can learn the
underlying physical phenomena a priori, preventing manual parameter setting and
computational burden. We perform experiments on a dataset consisting of two
catchments areas within Switzerland with 18 simpler, short rainfall patterns
and 4 long, more complex ones. Our results show that the deep learning models
present in general lower errors compared to the other methods, especially for
water depths $>0.5m$. However, when testing on more complex rainfall events or
unseen catchment areas, the deep models do not show benefits over the simpler
ones.
Related papers
- Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia.
Deep learning methods have been promising for predicting small to medium-sized climate extreme events over a short time horizon.
We present an ensemble-based machine learning approach that addresses large-scale extreme flooding challenges.
arXiv Detail & Related papers (2024-07-20T23:45:04Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Machine learning emulation of a local-scale UK climate model [22.374171443798037]
We show for the first time a machine learning model that is able to produce realistic samples of high-resolution rainfall.
By adding self-learnt, location-specific information to low resolution relative vorticity, quantiles and time-mean of the samples match well their counterparts from the high-resolution simulation.
arXiv Detail & Related papers (2022-11-29T11:44:35Z) - Probabilistic modeling of lake surface water temperature using a
Bayesian spatio-temporal graph convolutional neural network [55.41644538483948]
We propose to aggregate simulations of lake temperature at a certain depth together with a range of meteorological features.
This work demonstrates that the proposed model can deliver homogeneously good performance covering the whole lake surface.
Results are compared with a state-of-the-art Bayesian deep learning method.
arXiv Detail & Related papers (2021-09-27T09:19:53Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
In this paper, a multi-layer perceptron is applied to simulate groundwater level.
The adaptive moment estimation algorithm is also used to this matter.
Results indicate that deep learning algorithms can demonstrate a high accuracy prediction.
arXiv Detail & Related papers (2021-07-29T10:11:45Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.