NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion
- URL: http://arxiv.org/abs/2302.10109v1
- Date: Mon, 20 Feb 2023 17:12:00 GMT
- Title: NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion
- Authors: Jiatao Gu, Alex Trevithick, Kai-En Lin, Josh Susskind, Christian
Theobalt, Lingjie Liu, Ravi Ramamoorthi
- Abstract summary: Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
- Score: 107.67277084886929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novel view synthesis from a single image requires inferring occluded regions
of objects and scenes whilst simultaneously maintaining semantic and physical
consistency with the input. Existing approaches condition neural radiance
fields (NeRF) on local image features, projecting points to the input image
plane, and aggregating 2D features to perform volume rendering. However, under
severe occlusion, this projection fails to resolve uncertainty, resulting in
blurry renderings that lack details. In this work, we propose NerfDiff, which
addresses this issue by distilling the knowledge of a 3D-aware conditional
diffusion model (CDM) into NeRF through synthesizing and refining a set of
virtual views at test time. We further propose a novel NeRF-guided distillation
algorithm that simultaneously generates 3D consistent virtual views from the
CDM samples, and finetunes the NeRF based on the improved virtual views. Our
approach significantly outperforms existing NeRF-based and geometry-free
approaches on challenging datasets, including ShapeNet, ABO, and Clevr3D.
Related papers
- 3D Visibility-aware Generalizable Neural Radiance Fields for Interacting
Hands [51.305421495638434]
Neural radiance fields (NeRFs) are promising 3D representations for scenes, objects, and humans.
This paper proposes a generalizable visibility-aware NeRF framework for interacting hands.
Experiments on the Interhand2.6M dataset demonstrate that our proposed VA-NeRF outperforms conventional NeRFs significantly.
arXiv Detail & Related papers (2024-01-02T00:42:06Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
We propose SfMNeRF, a method to better synthesize novel views as well as reconstruct the 3D-scene geometry.
SfMNeRF employs the epipolar, photometric consistency, depth smoothness, and position-of-matches constraints to explicitly reconstruct the 3D-scene structure.
Experiments on two public datasets demonstrate that SfMNeRF surpasses state-of-the-art approaches.
arXiv Detail & Related papers (2023-04-11T13:37:17Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
We introduce DehazeNeRF as a framework that robustly operates in hazy conditions.
We demonstrate successful multi-view haze removal, novel view synthesis, and 3D shape reconstruction where existing approaches fail.
arXiv Detail & Related papers (2023-03-20T18:03:32Z) - NeRDi: Single-View NeRF Synthesis with Language-Guided Diffusion as
General Image Priors [24.05480789681139]
We propose NeRDi, a single-view NeRF synthesis framework with general image priors from 2D diffusion models.
We leverage off-the-shelf vision-language models and introduce a two-section language guidance as conditioning inputs to the diffusion model.
We also demonstrate our generalizability in zero-shot NeRF synthesis for in-the-wild images.
arXiv Detail & Related papers (2022-12-06T19:00:07Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
We propose to leverage both the global and local features to form an expressive 3D representation.
To synthesize a novel view, we train a multilayer perceptron (MLP) network conditioned on the learned 3D representation to perform volume rendering.
Our method can render novel views from only a single input image and generalize across multiple object categories using a single model.
arXiv Detail & Related papers (2022-07-12T17:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.